前言
本文介绍了先进的收集与分发机制(GD)及其在YOLOv11中的结合应用。GD机制通过卷积和自注意力操作实现,基于此设计的Gold - YOLO模型增强了多尺度特征融合能力,实现了延迟与精度的平衡。此外,首次在YOLO系列中引入MAE风格的预训练。我们将Gold - YOLO相关模块集成进YOLOv11,替换部分模块。实验表明,改进后的YOLOv11在COCO val数据集上取得了更好的性能 。
文章目录: YOLOv11改进大全:卷积层、轻量化、注意力机制、损失函数、Backbone、SPPF、Neck、检测头全方位优化汇总
专栏链接: YOLOv11改进专栏
介绍

摘要
近年来,YOLO系列模型在实时目标检测领域成为了领先的方法。许多研究通过修改架构、数据增强和设计新的损失函数将基线性能推向了更高的水平。然而,我们发现尽管特征金字塔网络(FPN)和路径聚合网络(PANet)在一定程度上缓解了信息融合问题,但以往的模型仍然存在该问题。为此,本研究提出了一种先进的收集与分发机制(Gather-and-Distribute Mechanism,简称GD),该机制通过卷积和自注意力操作实现。我们设计的新模型被命名为Gold-YOLO,其增强了多尺度特征融合能力,并在各个模型规模中实现了理想的延迟与精度平衡。
此外,我们首次在YOLO系列中引入了MAE风格的预训练,使YOLO系列模型能够从无监督预训练中获益。Gold-YOLO-N在COCO val数据集上取得了39.9%的AP,并在T4 GPU上实现了1030 FPS的推理速度,相较于具有类似FPS的之前SOTA模型YOLOv6-3.0-N,性能提升了+2.4%。
PyTorch代码可在 https://github.com/huawei-noah/EfficientComput
订阅专栏 解锁全文
3362

被折叠的 条评论
为什么被折叠?



