为什么密度泛函理论 (DFT) 会低估带隙?

本文深入探讨了密度泛函理论(DFT)在计算电子系统基态和激发态特性中的应用。Hohenberg-Kohn定理表明,系统的外部势能是基态电荷密度的唯一函数,而带隙可以通过计算不同电子数系统的基态总能量差异得出。然而,Kohn-Sham系统的带隙并不等于真实系统的带隙,因为局部和半局部的xc泛函缺乏导数不连续性。文章还介绍了Janak定理和导数不连续性在计算带隙中的作用,指出即使是精确的xc泛函,Kohn-Sham能带结构也会低估真实的带隙,主要是由于自相互作用的存在。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这是许多进入密度泛函理论领域的人提出的一个重要问题。我认为应该非常详细地回答这个问题,因此我想在 supermarche 的回答中添加几个方面。

如前所述,Hohenberg-Kohn 定理指出(直到恒定的能量转移)Born-Oppenheimer 逼近多体哈密顿量的外部势是基态电荷密度的独特函数。这意味着这个 Hamiltionian 本身是基态密度的泛函,因此理论上不仅被研究系统的基态特性被编码在基态密度中,而且激发态特性也被编码。我提到这是理论上的情况,因为对于实际研究来说,只有很少的特性泛函是已知的,可以从密度中提取相应的量。

众所周知(例如,参见LJ Sham, M. Schlüter: Density-Functional Theory of the Energy Gap, Phys. Rev. Lett. 51, 1888 (1983))具有 N N N的系统的基本带隙电子由具有偏差电子数的系统的基态总能量的差异给出为 E g = ( E N + 1 − E N ) − ( E N − E N − 1 ) E_g = (E_{N+1} - E_N) - (E_N - E_{N-1}) Eg=(EN+1EN)(ENEN1) 因此能够计算这些不同系统的基态总能量应该足以计算带隙。撇开交换相关(xc)函数的近似问题,密度泛函理论可以访问基态总能量,但这并不意味着Kohn-Sham系统的带隙是相互作用的基本间隙-电子系统。

让我们假设分数粒子数并仔细研究能量及其对电子数的依赖性。众所周知,这种依赖的性质如下图所示: 总能量与粒子数 精确的 xc 泛函通过直线连接整数粒子数的总能量,并在整数粒子数处具有导数不连续性 Δ x c \Delta^{xc} Δxc。另一方面,局部密度近似 (LDA) 表现出平滑的行为。

基于上面给出的基本带隙方程,我们可以推导出精确 xc 泛函的另一个表达式: E g = lim ⁡ η → 0 + { δ E [ n ] δ n ( r ) ∣ N + η − δ E [ n ] δ n ( r ) ∣ N − η } E_g = \lim_{\eta \rightarrow 0^+} \left\lbrace \left.\frac{\delta E [n]}{\delta n(\boldsymbol{r})}\right|_{N+\eta} - \left.\frac{\delta E[n]}{\delta n(\boldsymbol{r}) }\right|_{N-\eta} \right\rbrace Eg=η0+lim{δn(r)δE[n]N+ηδn(r)δE[n]Nη} 其中 n ( r ) n(\boldsymbol{r}) n(r)是密度。

通过插入 Janak 定理 ∂ E / ∂ n i = ϵ i \partial E / \partial n_i = \epsilon_i E/ni=ϵi和导数不连续性,最终得到 $ E g = ϵ N + 1 − ϵ N + Δ N x c E_g = \epsilon_{N+1} - \epsilon_{N} + \Delta_N^{xc} Eg=ϵN+1ϵN+ΔNxc $ 其中 ϵ i \epsilon_i ϵi表示 Kohn-Sham 系统中第 i 个电子态的能量。

该结果的详细推导在例如JP Perdew,M. Levy:精确 Kohn-Sham 轨道能量的物理含量:带隙和导数不连续性,物理学中提供。牧师莱特。51, 1884 (1983)或 E. Engel, RM Dreizler: Density Functional Theory - An Advanced Course, Springer (2011)。

这个结果的本质是,即使使用精确的 xc 泛函,Kohn-Sham 能带结构也不提供真实相互作用电子系统的基本带隙,因为它不包括有限和正导数不连续性。

xc 泛函(如 LDA 或 GGA)的局部和半局部近似不具有所讨论的导数不连续性。但是,人们可以提供一个简单的挥手原因,为什么在这种情况下能带结构低估了差距。
Kohn-Sham 系统的能量贡献之一是 Hartree 能量 E H [ n ] = 1 2 ∫ n ( r ) n ( r ′ ) ∣ r − r ′ ∣ d 3 r d 3 r ′ . E_H[n] = \frac{1}{2} \int \frac{n(\boldsymbol{r}) n(\boldsymbol{r} ')}{|\boldsymbol{r} - \boldsymbol{r}'|} d^3 rd^3 r'. EH[n]=21rrn(r)n(r)d3rd3r. 通过考虑像氢原子这样的简单单电子系统,很明显这种能量贡献意味着电子与自身的非物理自相互作用。

这种自相互作用必须由 xc 能量补偿,但不幸的是,局部和半局部 xc 泛函不可能完全抵消。因此,这种非物理能量贡献的一部分仍然存在,并向上推动占据状态的能量。如果一个状态没有被占用,它就不会对密度做出贡献,因此这些状态没有自相互作用。

带隙将占据状态与未占据状态分开。由于占据态的能量较低,这意味着间隙的减小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值