欧几里得空间中 (二维、三维、n 维) 点到面的距离

0. 前置知识

1. 向量投影(涉及一点内积知识)

在这里插入图片描述

2. 二维情况

A ⃗ = ( x A , y A ) , B ⃗ = ( x B , y B ) \vec{A} = (x_A, y_A), \vec{B} = (x_B, y_B) A =(xA,yA),B =(xB,yB)

A ⃗ 在 B ⃗ 上 的 投 影 : ∣ A ⃗ ∣ c o s θ = ∣ A ⃗ ∣ A ⃗ ⋅ B ⃗ ∣ A ⃗ ∣ ∣ B ⃗ ∣ = A ⃗ ⋅ B ⃗ ∣ B ⃗ ∣ \vec{A} 在 \vec{B} 上的投影: |\vec{A} |cos\theta = |\vec{A} | \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} A B A cosθ=A A B A B =B A B

当 B ⃗ 是 单 位 向 量 时 , ∣ B ⃗ ∣ = 1 , ∣ A ⃗ ∣ c o s θ = A ⃗ ⋅ B ⃗ = x A x B + y A y B 当 \vec{B} 是单位向量时,|\vec{B}| = 1, |\vec{A} |cos\theta = \vec{A} \cdot \vec{B} = x_Ax_B+y_Ay_B B B =1A cosθ=A B =xAxB+yAyB

3. 三维情况

A ⃗ = ( x A , y A , z A ) , B ⃗ = ( x B , y B , z B ) \vec{A} = (x_A, y_A,z_A), \vec{B} = (x_B, y_B, z_B) A =(xA,yA,zA),B =(xB,yB,zB)

由上面 二维情况可以看出

当 B ⃗ 是 单 位 向 量 时 , ∣ B ⃗ ∣ = 1 , ∣ A ⃗ ∣ c o s θ = A ⃗ ⋅ B ⃗ = x A x B + y A y B + z A z B 当 \vec{B} 是单位向量时,|\vec{B}| = 1, |\vec{A} |cos\theta = \vec{A} \cdot \vec{B} = x_Ax_B+y_Ay_B + z_Az_B B B =1A cosθ=A B =xAxB+yAyB+zAzB

3. n 维情况下

A ⃗ = ( a 1 , a 2 , a 3 , ⋯   , a n ) , B ⃗ = ( b 1 , b 2 , b 3 , ⋯   , b n ) \vec{A} = (a_1, a_2,a_3, \cdots, a_n), \vec{B} = (b_1, b_2,b_3, \cdots, b_n) A =(a1,a2,a3,,an),B =(b1,b2,b3,,bn)

当 B ⃗ 是 单 位 向 量 时 , ∣ B ⃗ ∣ = 1 , ∣ A ⃗ ∣ c o s θ = A ⃗ ⋅ B ⃗ = ∑ i = 1 n a i b i 当 \vec{B} 是单位向量时,|\vec{B}| = 1, |\vec{A} |cos\theta = \vec{A} \cdot \vec{B} = \sum_{i=1}^{n} {a_i b_i} B B =1A cosθ=A B =i=1naibi


1. 二维下点到线的距离

在这里插入图片描述

直线:
a x + b y + c = 0 ax + by + c = 0 ax+by+c=0

直线外一点 A 到直线的距离
d = ∣ a x 1 + b y 1 + c ∣ a 2 + b 2 d = \frac {|ax_1 + by_1 +c| } {\sqrt{a^2 + b^2}} d=a2+b2 ax1+by1+c

推导:
取 直 线 法 向 量 n ⃗ = ( a , b ) , 那 么 直 线 的 单 位 法 向 量 n ⃗ e = ( a , b ) a 2 + b 2 取直线法向量 \vec{n} = (a, b),那么直线的单位法向量 \vec{n}_e = \frac{(a, b)}{\sqrt{a^2 + b^2}} 线n =(a,b)线n e=a2+b2 (a,b)

在 直 线 上 随 便 取 一 点 D ( x 0 , y 0 ) , 直 线 外 点 A 到 D 的 向 量 记 为 v ⃗ = ( x 0 − x 1 , y 0 − y 1 ) 在直线上随便取一点 D(x_0, y_0),直线外点A到D的向量记为 \vec{v} = (x_0-x_1, y_0-y_1) 线便D(x0,y0)线ADv =(x0x1,y0y1)

由 上 面 的 投 影 公 式 : D A ⃗ 到 E A ⃗ 即 n ⃗ 的 投 影 即 为 点 到 直 线 的 距 离 , 取 直 线 单 位 法 向 量 n ⃗ e = ( a , b ) a 2 + b 2 , 代 入 投 影 计 算 公 式 : 由上面的投影公式:\vec{DA} 到 \vec{EA} 即\vec{n} 的投影即为点到直线的距离,取直线单位法向量 \vec{n}_e = \frac{(a, b)}{\sqrt{a^2 + b^2}},代入投影计算公式: DA EA n 线线n e=a2+b2 (a,b)

d = ∣ n ⃗ e ⋅ v ⃗ ∣ = ∣ ( a , b ) a 2 + b 2 ( x 0 − x 1 , y 0 − y 1 ) ∣ = ∣ a ( x 0 − x 1 ) + b ( y 0 − y 1 ) ∣ a 2 + b 2 = ∣ a x 1 + b y 1 + c ∣ a 2 + b 2 d = | \vec{n}_e \cdot \vec{v} | = | \frac{(a, b)}{\sqrt{a^2 + b^2}} (x_0-x_1, y_0-y_1)| = \frac{|a(x_0-x_1) + b(y_0-y_1)|}{\sqrt{a^2 + b^2}} = \frac {|ax_1 + by_1 +c| } {\sqrt{a^2 + b^2}} d=n ev =a2+b2 (a,b)(x0x1,y0y1)=a2+b2 a(x0x1)+b(y0y1)=a2+b2 ax1+by1+c

2. 三维情况

平面:
a x + b y + c z + d = 0 ax + by + cz + d = 0 ax+by+cz+d=0

单位法向量:
n ⃗ e = ( a , b , c ) a 2 + b 2 + c 2 \vec{n}_e = \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} n e=a2+b2+c2 (a,b,c)

平面外一点 P ( x 1 , y 1 , z 1 ) (x_1, y_1, z_1) (x1,y1,z1) 到 平面上任一点 D ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0) 的向量 v ⃗ = ( x 1 − x 0 , y 1 − y 0 , z 1 − z 0 ) \vec{v} = (x_1 - x_0, y_1 - y_0, z_1 - z_0) v =(x1x0,y1y0,z1z0)

距离:
d = ∣ n ⃗ e ⋅ v ⃗ ∣ = ∣ ( a , b , c ) a 2 + b 2 + c 2 ( x 0 − x 1 , y 0 − y 1 , z 0 − z 1 ) ∣ = ∣ a ( x 0 − x 1 ) + b ( y 0 − y 1 ) + c ( z 0 − z 1 ) ∣ a 2 + b 2 + c 2 = ∣ a x 1 + b y 1 + c z 1 + d ∣ a 2 + b 2 + c 2 d = | \vec{n}_e \cdot \vec{v} | = | \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} (x_0-x_1, y_0-y_1, z_0-z_1)| = \frac{|a(x_0-x_1) + b(y_0-y_1) + c(z_0 - z_1) |}{\sqrt{a^2 + b^2 +c^2 }} = \frac {|ax_1 + by_1 +cz_1 + d| } {\sqrt{a^2 + b^2 + c^2}} d=n ev =a2+b2+c2 (a,b,c)(x0x1,y0y1,z0z1)=a2+b2+c2 a(x0x1)+b(y0y1)+c(z0z1)=a2+b2+c2 ax1+by1+cz1+d

3. n 维情况

n 维超平面
a 1 x 1 + a 2 x 2 + ⋯ + a n x n + b = 0 a_1x_1 + a_2x_2 + \cdots + a_nx_n + b = 0 a1x1+a2x2++anxn+b=0

单位超平面法向量:
n ⃗ e = ( a 1 , a 2 , ⋯   , a n ) a 1 2 + a 2 2 + ⋯ + a n 2 \vec{n}_e = \frac { (a_1, a_2, \cdots, a_n)} {\sqrt{{a_1}^2 + {a_2}^2 + \cdots + {a_n}^2}} n e=a12+a22++an2 (a1,a2,,an)

超平面外的一点 P

( x 1 p , x 2 p , x 3 p , ⋯   , x n p ) (x_{1p}, x_{2p}, x_{3p}, \cdots, x_{np}) (x1p,x2p,x3p,,xnp)

到超平面内任意一点 D

( x 1 d , x 2 d , x 3 d , ⋯   , x n d ) (x_{1d}, x_{2d}, x_{3d}, \cdots, x_{nd}) (x1d,x2d,x3d,,xnd)

的向量:

v ⃗ = ( x 1 d − x 1 p , x 2 d − x 2 p , ⋯   , x n d − x n p ) \vec{v} = (x_{1d} - x_{1p}, x_{2d} - x_{2p}, \cdots, x_{nd} - x_{np}) v =(x1dx1p,x2dx2p,,xndxnp)

距离:

d = ∣ n ⃗ e ⋅ v ⃗ ∣ = ∣ ( a 1 , a 2 , ⋯   , a n ) a 1 2 + a 2 2 + ⋯ + a n 2 ( x 1 d − x 1 p , x 2 d − x 2 p , ⋯   , x n d − x n p ) ∣ d = | \vec{n}_e \cdot \vec{v} | = | \frac { (a_1, a_2, \cdots, a_n)} {\sqrt{{a_1}^2 + {a_2}^2 + \cdots + {a_n}^2}} (x_{1d} - x_{1p}, x_{2d} - x_{2p}, \cdots, x_{nd} - x_{np}) | d=n ev =a12+a22++an2 (a1,a2,,an)(x1dx1p,x2dx2p,,xndxnp)

整理得:

d = ∣ ( a 1 x 1 p + a 2 x 2 p + ⋯ + a n x n p ) ∣ a 1 2 + a 2 2 + ⋯ + a n 2 d = \frac { |(a_1 x_{1p} + a_2 x_{2p} + \cdots + a_n x_{np}) | } {\sqrt{{a_1}^2 + {a_2}^2 + \cdots + {a_n}^2}} d=a12+a22++an2 (a1x1p+a2x2p++anxnp)

  • 4
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值