0. 前置知识
1. 向量投影(涉及一点内积知识)
2. 二维情况
A ⃗ = ( x A , y A ) , B ⃗ = ( x B , y B ) \vec{A} = (x_A, y_A), \vec{B} = (x_B, y_B) A=(xA,yA),B=(xB,yB)
A ⃗ 在 B ⃗ 上 的 投 影 : ∣ A ⃗ ∣ c o s θ = ∣ A ⃗ ∣ A ⃗ ⋅ B ⃗ ∣ A ⃗ ∣ ∣ B ⃗ ∣ = A ⃗ ⋅ B ⃗ ∣ B ⃗ ∣ \vec{A} 在 \vec{B} 上的投影: |\vec{A} |cos\theta = |\vec{A} | \frac{\vec{A} \cdot \vec{B}}{|\vec{A}||\vec{B}|} = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|} A在B上的投影:∣A∣cosθ=∣A∣∣A∣∣B∣A⋅B=∣B∣A⋅B
当 B ⃗ 是 单 位 向 量 时 , ∣ B ⃗ ∣ = 1 , ∣ A ⃗ ∣ c o s θ = A ⃗ ⋅ B ⃗ = x A x B + y A y B 当 \vec{B} 是单位向量时,|\vec{B}| = 1, |\vec{A} |cos\theta = \vec{A} \cdot \vec{B} = x_Ax_B+y_Ay_B 当B是单位向量时,∣B∣=1,∣A∣cosθ=A⋅B=xAxB+yAyB
3. 三维情况
A ⃗ = ( x A , y A , z A ) , B ⃗ = ( x B , y B , z B ) \vec{A} = (x_A, y_A,z_A), \vec{B} = (x_B, y_B, z_B) A=(xA,yA,zA),B=(xB,yB,zB)
由上面 二维情况可以看出
当 B ⃗ 是 单 位 向 量 时 , ∣ B ⃗ ∣ = 1 , ∣ A ⃗ ∣ c o s θ = A ⃗ ⋅ B ⃗ = x A x B + y A y B + z A z B 当 \vec{B} 是单位向量时,|\vec{B}| = 1, |\vec{A} |cos\theta = \vec{A} \cdot \vec{B} = x_Ax_B+y_Ay_B + z_Az_B 当B是单位向量时,∣B∣=1,∣A∣cosθ=A⋅B=xAxB+yAyB+zAzB
3. n 维情况下
A ⃗ = ( a 1 , a 2 , a 3 , ⋯ , a n ) , B ⃗ = ( b 1 , b 2 , b 3 , ⋯ , b n ) \vec{A} = (a_1, a_2,a_3, \cdots, a_n), \vec{B} = (b_1, b_2,b_3, \cdots, b_n) A=(a1,a2,a3,⋯,an),B=(b1,b2,b3,⋯,bn)
当 B ⃗ 是 单 位 向 量 时 , ∣ B ⃗ ∣ = 1 , ∣ A ⃗ ∣ c o s θ = A ⃗ ⋅ B ⃗ = ∑ i = 1 n a i b i 当 \vec{B} 是单位向量时,|\vec{B}| = 1, |\vec{A} |cos\theta = \vec{A} \cdot \vec{B} = \sum_{i=1}^{n} {a_i b_i} 当B是单位向量时,∣B∣=1,∣A∣cosθ=A⋅B=i=1∑naibi
1. 二维下点到线的距离
直线:
a
x
+
b
y
+
c
=
0
ax + by + c = 0
ax+by+c=0
直线外一点 A 到直线的距离
d
=
∣
a
x
1
+
b
y
1
+
c
∣
a
2
+
b
2
d = \frac {|ax_1 + by_1 +c| } {\sqrt{a^2 + b^2}}
d=a2+b2∣ax1+by1+c∣
推导:
取
直
线
法
向
量
n
⃗
=
(
a
,
b
)
,
那
么
直
线
的
单
位
法
向
量
n
⃗
e
=
(
a
,
b
)
a
2
+
b
2
取直线法向量 \vec{n} = (a, b),那么直线的单位法向量 \vec{n}_e = \frac{(a, b)}{\sqrt{a^2 + b^2}}
取直线法向量n=(a,b),那么直线的单位法向量ne=a2+b2(a,b)
在 直 线 上 随 便 取 一 点 D ( x 0 , y 0 ) , 直 线 外 点 A 到 D 的 向 量 记 为 v ⃗ = ( x 0 − x 1 , y 0 − y 1 ) 在直线上随便取一点 D(x_0, y_0),直线外点A到D的向量记为 \vec{v} = (x_0-x_1, y_0-y_1) 在直线上随便取一点D(x0,y0),直线外点A到D的向量记为v=(x0−x1,y0−y1)
由 上 面 的 投 影 公 式 : D A ⃗ 到 E A ⃗ 即 n ⃗ 的 投 影 即 为 点 到 直 线 的 距 离 , 取 直 线 单 位 法 向 量 n ⃗ e = ( a , b ) a 2 + b 2 , 代 入 投 影 计 算 公 式 : 由上面的投影公式:\vec{DA} 到 \vec{EA} 即\vec{n} 的投影即为点到直线的距离,取直线单位法向量 \vec{n}_e = \frac{(a, b)}{\sqrt{a^2 + b^2}},代入投影计算公式: 由上面的投影公式:DA到EA即n的投影即为点到直线的距离,取直线单位法向量ne=a2+b2(a,b),代入投影计算公式:
d = ∣ n ⃗ e ⋅ v ⃗ ∣ = ∣ ( a , b ) a 2 + b 2 ( x 0 − x 1 , y 0 − y 1 ) ∣ = ∣ a ( x 0 − x 1 ) + b ( y 0 − y 1 ) ∣ a 2 + b 2 = ∣ a x 1 + b y 1 + c ∣ a 2 + b 2 d = | \vec{n}_e \cdot \vec{v} | = | \frac{(a, b)}{\sqrt{a^2 + b^2}} (x_0-x_1, y_0-y_1)| = \frac{|a(x_0-x_1) + b(y_0-y_1)|}{\sqrt{a^2 + b^2}} = \frac {|ax_1 + by_1 +c| } {\sqrt{a^2 + b^2}} d=∣ne⋅v∣=∣a2+b2(a,b)(x0−x1,y0−y1)∣=a2+b2∣a(x0−x1)+b(y0−y1)∣=a2+b2∣ax1+by1+c∣
2. 三维情况
平面:
a
x
+
b
y
+
c
z
+
d
=
0
ax + by + cz + d = 0
ax+by+cz+d=0
单位法向量:
n
⃗
e
=
(
a
,
b
,
c
)
a
2
+
b
2
+
c
2
\vec{n}_e = \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}}
ne=a2+b2+c2(a,b,c)
平面外一点 P ( x 1 , y 1 , z 1 ) (x_1, y_1, z_1) (x1,y1,z1) 到 平面上任一点 D ( x 0 , y 0 , z 0 ) (x_0, y_0, z_0) (x0,y0,z0) 的向量 v ⃗ = ( x 1 − x 0 , y 1 − y 0 , z 1 − z 0 ) \vec{v} = (x_1 - x_0, y_1 - y_0, z_1 - z_0) v=(x1−x0,y1−y0,z1−z0)
距离:
d
=
∣
n
⃗
e
⋅
v
⃗
∣
=
∣
(
a
,
b
,
c
)
a
2
+
b
2
+
c
2
(
x
0
−
x
1
,
y
0
−
y
1
,
z
0
−
z
1
)
∣
=
∣
a
(
x
0
−
x
1
)
+
b
(
y
0
−
y
1
)
+
c
(
z
0
−
z
1
)
∣
a
2
+
b
2
+
c
2
=
∣
a
x
1
+
b
y
1
+
c
z
1
+
d
∣
a
2
+
b
2
+
c
2
d = | \vec{n}_e \cdot \vec{v} | = | \frac{(a, b, c)}{\sqrt{a^2 + b^2 + c^2}} (x_0-x_1, y_0-y_1, z_0-z_1)| = \frac{|a(x_0-x_1) + b(y_0-y_1) + c(z_0 - z_1) |}{\sqrt{a^2 + b^2 +c^2 }} = \frac {|ax_1 + by_1 +cz_1 + d| } {\sqrt{a^2 + b^2 + c^2}}
d=∣ne⋅v∣=∣a2+b2+c2(a,b,c)(x0−x1,y0−y1,z0−z1)∣=a2+b2+c2∣a(x0−x1)+b(y0−y1)+c(z0−z1)∣=a2+b2+c2∣ax1+by1+cz1+d∣
3. n 维情况
n 维超平面
a
1
x
1
+
a
2
x
2
+
⋯
+
a
n
x
n
+
b
=
0
a_1x_1 + a_2x_2 + \cdots + a_nx_n + b = 0
a1x1+a2x2+⋯+anxn+b=0
单位超平面法向量:
n
⃗
e
=
(
a
1
,
a
2
,
⋯
,
a
n
)
a
1
2
+
a
2
2
+
⋯
+
a
n
2
\vec{n}_e = \frac { (a_1, a_2, \cdots, a_n)} {\sqrt{{a_1}^2 + {a_2}^2 + \cdots + {a_n}^2}}
ne=a12+a22+⋯+an2(a1,a2,⋯,an)
超平面外的一点 P
( x 1 p , x 2 p , x 3 p , ⋯ , x n p ) (x_{1p}, x_{2p}, x_{3p}, \cdots, x_{np}) (x1p,x2p,x3p,⋯,xnp)
到超平面内任意一点 D
( x 1 d , x 2 d , x 3 d , ⋯ , x n d ) (x_{1d}, x_{2d}, x_{3d}, \cdots, x_{nd}) (x1d,x2d,x3d,⋯,xnd)
的向量:
v ⃗ = ( x 1 d − x 1 p , x 2 d − x 2 p , ⋯ , x n d − x n p ) \vec{v} = (x_{1d} - x_{1p}, x_{2d} - x_{2p}, \cdots, x_{nd} - x_{np}) v=(x1d−x1p,x2d−x2p,⋯,xnd−xnp)
距离:
d = ∣ n ⃗ e ⋅ v ⃗ ∣ = ∣ ( a 1 , a 2 , ⋯ , a n ) a 1 2 + a 2 2 + ⋯ + a n 2 ( x 1 d − x 1 p , x 2 d − x 2 p , ⋯ , x n d − x n p ) ∣ d = | \vec{n}_e \cdot \vec{v} | = | \frac { (a_1, a_2, \cdots, a_n)} {\sqrt{{a_1}^2 + {a_2}^2 + \cdots + {a_n}^2}} (x_{1d} - x_{1p}, x_{2d} - x_{2p}, \cdots, x_{nd} - x_{np}) | d=∣ne⋅v∣=∣a12+a22+⋯+an2(a1,a2,⋯,an)(x1d−x1p,x2d−x2p,⋯,xnd−xnp)∣
整理得:
d = ∣ ( a 1 x 1 p + a 2 x 2 p + ⋯ + a n x n p ) ∣ a 1 2 + a 2 2 + ⋯ + a n 2 d = \frac { |(a_1 x_{1p} + a_2 x_{2p} + \cdots + a_n x_{np}) | } {\sqrt{{a_1}^2 + {a_2}^2 + \cdots + {a_n}^2}} d=a12+a22+⋯+an2∣(a1x1p+a2x2p+⋯+anxnp)∣