数字经济已成为推动国家经济发展的核心引擎,《2024年政府工作报告》着重强调深化大数据、人工智能等研发应用,全力打造具有国际竞争力的数字产业集群。
当下,各行业对大数据分析的认识不断加深,企业对数据分析技能的需求呈爆发式增长,企业数字化进程全面提速。在产品、研发、财务、人力、销售、维护等各个环节,海量数据扑面而来。
在此背景下,本课程应运而生,旨在帮助学员理解大数据的影响与价值,掌握利用大数据进行决策分析的方法,以及AI技术如何助力企业实现更高效、更精准的数据洞察与决策支持,实现从理念到应用的跨越,提升工作效率与质量,助力企业降本增效。
时间 | 章节 | 课程名称 | 详情 |
第一天 | 一、数字经济与数据分析基础 | 数字经济与数据分析概览 | 1.数字经济时代背景:数字经济时代的特征和发展趋势 2.数据分析基础:数据分析的定义、目的和重要性,分析数据分析的核心要素 3.数据价值链与生命周期:数据从产生到应用的全过程 |
二、数据分析核心能力与建设 | 数据分析能力与文化 | 1.数据分析能力:数据分析人才需具备的技术能力、业务理解能力、数据敏感度和沟通能力 2.分析文化构建:分析文化的重要性,包括基于事实、结果导向的思维方式 | |
三、行业数据分析与数据管理 | 行业解决方案与数据管理平台 | 1.行业数据分析:制造业、零售业、银行业、保险业等行业的数据分析解决方案 2.数据仓库与技术架构:数据仓库技术架构的构成和优势 3.数据管理平台:数据管理平台的功能和作用,强调数据质量管理和数据安全性的关键性 | |
四、数据可视化与项目价值 | 数据可视化与业务决策及项目价值 | 1.数据可视化原理:数据可视化的重要性,数据可视化的原理和方法 2.业务决策支持:数据可视化在业务决策中的应用场景和效果 3.项目价值实现:项目主题选择标准和客户价值实现的关键因素,数据分析在业务转型和增长中的推动作用 | |
五、AI&BI融合实战,大模型驱动深度挖掘与应用课程 | 深度挖掘产品实战应用 | 1.介绍AI与BI概念,强调两者结合的核心价值 2.AI提升数据精度与速度,为企业带来精准洞察 3.AI+BI融合如何助力智能决策,优化运营流程 4.AI+BI融合的实战优势显著,包括内置AI算法、脚本编程灵活性 5.典型行业案例分享 | |
第二天 | 六、数据分析方案 | 数据分析全流程报告制作指南 | 1.制定分析计划,包括确定分析目标、选择分析方法、设计分析流程 2.数据采集与整合、数据处理与分析、数据报告设计与呈现 |
七、数据分析工具技能 | BI基础实操 | 1.数据分析基础概念,数据处理技巧,数据清洗与预处理 2.报表布局设计原则,报告设计与美化技巧,数据可视化基础 3.柱状图、线图、饼图等经典图形绘制,高级图形如气泡图、词云的应用 | |
1.占比类图形分析技巧,GIS地图与过滤组件的应用,数据空间分布设计 2.数据筛选技巧与组件应用,传参组件、辅助类组件与自定义组件 | |||
BI进阶演练 | 1.深入解析计算列与报告脚本机制,掌握过滤与参数应用 2.精通各类过滤组件与参数,实现高校数据筛选与TOPN分析交互与美观报告 | ||
1.动态参数、数据钻取、同环比分析,打造高校数据分析 2.UI设计建议与实战技巧,提升报告美观度与可读性 3.大数据分析师销售领域成功案例与优化时间,报告制作 | |||
第三天 | BI高级强化 | 1.高级数据分析流程,数据分析目标、数据分析效果等知识 2.指标分析搭建的方法和技巧,关键指标的选择、计算方法 3.报告实现和分析模型开发过程,包括数据清晰、数据转换、模型构建 | |
案例剖析 | 1.通过杜邦分析案例,教授运用财务分析工具评估企业经营状况 2.通过RFM分析,教授运用财务分析工具评估企业经营状况 | ||
八、行业案例工作坊 | 综合各行业的实战案例 | 1.金融行业案例 2.制造行业案例 3.能源行业案例 4.零售行业案例 |
永洪科技10+年大数据技术专家亲授,联袂教学,经验直达业务痛点,助力用户快速掌握数据分析技能!
适用对象:
管理者:企业数据决策层,急需提升团队分析能力的领导。
技术派:数据分析师、开发工程师、数据挖掘工程师等技术人员。
转型者:渴望通过数据分析技能实现职场跃迁的职场人。