Stable Audio Open 1.0文生音乐教程新手向超简单资源模型分享

文生音乐

大家好,我是每天分享AI绘画的萤火君!

这篇文章给大家分享点不一样的内容:文生音乐/文生音频。

今天使用的模型是由大名鼎鼎的Stability AI公司发布的Stable Audio Open 1.0,Stability AI就是发布SD1.5、SDXL、SD3和SD3.5的那家公司,虽然现在AI绘画界的王者是Flux,不过还是有很多场景、很多同学在使用SD系列的模型,Stability AI这家公司也发布过很多有趣的模型,Stable Audio Open 1.0就是其中之一。

模型介绍

Stable Audio Open 1.0 是 Stability AI 推出的开源音频生成模型,能够通过文本提示生成最长 47 秒的高质量音效和短音乐片段。它基于 Transformer 架构的潜在扩散技术,专为音乐制作和声音设计优化,可生成鼓点、乐器即兴片段、环境声、拟音等素材。用户可对模型进行微调,例如根据个性化鼓点录音生成新节奏。训练数据包含超 48 万条授权音频,生成内容可安全商用。

环境准备

这里使用的运行环境是 ComfyUI,请将ComfyUI升级到最新版本。

没有ComfyUI的同学建议先使用云环境来运行,无需复杂且容易出错的环境配置,待有应用价值了,再到本地折腾也不迟。我的云镜像:好易智算

模型下载

模型下载后放到基础模型目录,一般是 ComfyUI/models/checkpoints 目录。

模型下载后放到clip目录,一般是 ComfyUI/models/clip 目录。

访问 huggingface 不方便的同学可以发消息文生音频到我的公众号萤火AI绘画即可获取相关模型。

工作流

工作流特别简单,请看下图(文末下载):

我们可以看到,这个文生音频的工作流和生成图片的工作流样子差不多,也是要加载扩散模型、VAE模型和文本编码器模型,填写正向提示词和反向提示词,使用采样器和调度器进行生成,最后通过解码器输出音频数据,唯一看起来差别比较大的是这里设置的是音频长度,而不是图片尺寸。

还有几个采样器的参数有点不同,也需要特别关注下:

再给大家分享几个提示词:

更多提示词见资源下载。

资源下载

本文用到的插件、提示词、工作流和模型都已经整理好,下载地址:夸克网盘分享

另外我还免费分享了几十条ComfyUI工作流,给我的公/众\号 萤火AI绘画 发消息 工作流 即可获取。

如果你需要全面学习AI绘画,获取更加好用的高级工作流,请点击下方链接或者扫码订阅小册:小报童

<think>好的,我现在需要处理用户关于AIGC(生成式人工智能)技术发展路径和关键节点的查询。首先,我需要回顾用户提供的引用内容,确保回答准确并正确引用。用户提到了两个引用,[^1]和[^2],其中引用[1]详细描述了AIGC的发展历程、技术推进路线、应用场景及未来前景,而引用[2]则侧重于文生图技术的发展。 首先,我需要整理AIGC技术的发展历程,特别是关键的时间节点。根据引用[1],AIGC的发展可以分为几个阶段:萌芽期、探索期和爆发期。例如,2014年GAN的提出是一个重要节点,2017年Transformer架构的推出也是关键。同时,OpenAI模型发展进程如GPT系列也需要涵盖。 接下来是技术推进路线。这里需要区分不同技术方向,如生成模型架构(GAN、Transformer、Diffusion)、多模态生成技术和强化学习的结合。引用[1]提到了这些技术,需要详细说明每个技术的贡献和时间点。 关键技术部分需要列举如GAN、Transformer、扩散模型、CLIP等,并解释它们的作用。例如,扩散模型在图像生成中的应用,如Stable Diffusion,属于引用[1]和[2]的内容。 应用场景方面,用户可能想知道AIGC在文本、图像、视频等领域的应用,这部分引用[1]的2.1和3.1部分有涉及,需要结合实例说明,如DALL-E和MidJourney。 未来展望部分,引用[1]的4.1提到了科研重要性,需要强调技术创新和伦理问题,这也符合当前AI发展的趋势。 在回答过程中,必须确保所有数学表达式正确使用LaTeX格式,如生成模型的数学公式。例如,GAN的目标函数可以表示为$$ \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log (1 - D(G(z)))] $$,并正确引用[^1]。 用户要求生成相关问题,我需要设计四个与AIGC技术发展相关的问题,涵盖关键技术对比、多模态生成难点、伦理挑战和产业影响,确保问题具有深度和引导性。 最后,检查引用标识是否正确添加,如每个关键点后的引用[^1]或,并确保回答结构清晰,符合用户的中文要求,避免使用任何Markdown格式,保持自然流畅。</think>### AIGC技术发展路径与关键节点解析 #### 一、技术发展历程 1. **萌芽期(2014年前)** - 2014年,生成对抗网络(GAN)的提出标志着AIGC技术进入新阶段。其数学目标函数可表示为: $$ \min_G \max_D V(D, G) = \mathbb{E}_{x \sim p_{data}}[\log D(x)] + \mathbb{E}_{z \sim p_z}[\log (1 - D(G(z)))] $$ 该框架为图像生成奠定了基础。 - 同期,变分自编码器(VAE)通过概率建模实现数据生成,公式为: $$ \log p(x) \geq \mathbb{E}_{q(z|x)}[\log p(x|z)] - D_{KL}(q(z|x) \| p(z)) $$ 2. **探索期(2017-2020)** - 2017年,Transformer架构的提出(论文《Attention Is All You Need》)彻底改变了序列建模,公式中的自注意力机制为: $$ \text{Attention}(Q, K, V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V $$ 这一架构支撑了GPT、BERT等大语言模型- 2020年,OpenAI发布GPT-3(1750亿参数),验证了模型规模对生成能力的提升。 3. **爆发期(2021至今)** - 2021年,扩散模型(Diffusion Models)在图像生成领域越GAN,其核心公式为: $$ q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I) $$ Stable Diffusion等工具推动文生图技术普及。 - 2022年,ChatGPT(基于GPT-3.5/4)实现自然语言交互突破,带动AIGC应用爆发。 --- #### 二、关键技术路线图 | 技术方向 | 关键进展 | 代表性模型/工具 | |----------------|--------------------------------------------|--------------------------| | **生成模型架构** | GAN → Transformer → Diffusion | StyleGAN、GPT-3、Stable Diffusion | | **多模态生成** | 文本→图像→视频→3D | DALL·E、Sora、Point-E | | **训练方法** | 无监督预训练 → 指令微调 → 人类反馈强化学习(RLHF) | InstructGPT、ChatGPT | --- #### 三、核心技术突破 1. **生成模型架构创新** - **扩散模型**:通过逐步去噪实现高质量生成,解决了GAN的模式崩溃问题[^2]。 - **Transformer跨模态扩展**:如CLIP模型将文本与图像映射到同一空间,公式为: $$ \text{similarity} = \text{cosine}(E_{\text{text}}(t), E_{\text{image}}(i)) $$ 2. **训练数据与算力突破** - 训练数据集规模从GB级(GPT-2)扩展到TB级(GPT-4)[^1]。 - 算力需求呈指数增长,GPT-3训练需$3.14 \times 10^{23}$ FLOPs。 --- #### 四、典型应用场景 1. **文生图**:MidJourney、Stable Diffusion实现“文字→图像”生成。 2. **代码生成**:GitHub Copilot基于Codex模型自动补全代码。 3. **数字人创作**:通过NeRF、Audio2Face等技术生成3D虚拟形象。 --- #### 五、未来发展方向 1. **可控生成**:提升生成内容的精确控制能力(如空间约束$f(x,y,z)=0$)。 2. **推理能力增强**:结合符号逻辑实现可解释生成,公式化表示为: $$ \text{Generate}(x) = \text{NN}(x) \oplus \text{SymbolicReasoning}(x) $$ 3. **伦理与安全**:开发内容检测算法(如检测生成文本的统计特征$p_{\text{fake}}(x)$)[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值