高数笔记-第一章 函数与极限-5

第五节 极限运算法则

定理 1 两个无穷小的和是无穷小.
推论 有限个无穷小之和也是无穷小.

定理 2 有界函数与无穷小的乘积是无穷小.
推论 1 常数与无穷小的乘积是无穷小.
推论 2 有限个无穷小的乘积是无穷小.

定理 3 如果 lim ⁡ f ( x ) = A , lim ⁡ g ( x ) = B \lim\limits{f(x)} = A, \lim\limits{g(x)} = B limf(x)=A,limg(x)=B,那么
(1) lim ⁡ [ f ( x ) ± g ( x ) ] = lim ⁡ f ( x ) ± lim ⁡ g ( x ) = A ± B \lim [f(x) \pm g(x)] = \lim\limits{f(x)} \pm \lim\limits{g(x)} = A\pm B lim[f(x)±g(x)]=limf(x)±limg(x)=A±B
(2) lim ⁡ [ f ( x ) ⋅ g ( x ) ] = lim ⁡ f ( x ) ⋅ lim ⁡ g ( x ) = A ⋅ B \lim [f(x) \cdot g(x)] = \lim\limits{f(x)} \cdot \lim\limits{g(x)} = A \cdot B lim[f(x)g(x)]=limf(x)limg(x)=AB
(3)若又有 B ≠ 0 B \ne 0 B=0,则有
lim ⁡ f ( x ) g ( x ) = lim ⁡ f ( x ) lim ⁡ g ( x ) = A B . \lim\limits{\dfrac{f(x)}{g(x)}} = \dfrac{\lim f(x)}{\lim g(x)} = \dfrac{A}{B}. limg(x)f(x)=limg(x)limf(x)=BA.

推论 1 如果 lim ⁡ f ( x ) \lim f(x) limf(x) 存在,而 c c c 为常数,那么 lim ⁡ [ c f ( x ) ] = c lim ⁡ f ( x ) \lim [cf(x)] = c\lim f(x) lim[cf(x)]=climf(x).
推论 2 如果 lim ⁡ f ( x ) \lim f(x) limf(x) 存在,而 n n n 是正整数,那么 lim ⁡ [ f ( x ) ] n = [ lim ⁡ f ( x ) ] n \lim [f(x)]^n = [\lim f(x)]^n lim[f(x)]n=[limf(x)]n.

定理 4 设有数列 { x n } \{x_n\} {xn} { y n } \{y_n\} {yn}. 如果 lim ⁡ n → ∞ x n = A \lim\limits_{n \to \infty}{x_n} = A nlimxn=A lim ⁡ n → ∞ y n = B \lim\limits_{n \to \infty}{y_n} = B nlimyn=B,那么
(1) lim ⁡ n → ∞ ( x n ± y n ) = A ± B \lim\limits_{n \to \infty}{(x_n \pm y_n)} = A \pm B nlim(xn±yn)=A±B
(2) lim ⁡ n → ∞ ( x n ⋅ y n ) = A ⋅ B \lim\limits_{n \to \infty}{(x_n \cdot y_n)} = A \cdot B nlim(xnyn)=AB
(3)当 y n ≠ 0   ( n = 1 , 2 , ⋯   ) y_n \ne 0 \ (n = 1, 2, \cdots) yn=0 (n=1,2,) B ≠ 0 B \ne 0 B=0 时, lim ⁡ x n y n = A B \lim \dfrac{x_n}{y_n} = \dfrac{A}{B} limynxn=BA.

定理 5 如果 φ ( x ) ≥ Ψ ( x ) \varphi (x)\geq \varPsi (x) φ(x)Ψ(x),而 lim ⁡ φ ( x ) = A , lim ⁡ Ψ ( x ) = B , 那 么 A ≥ B \lim \varphi(x) = A,\lim \varPsi (x) = B,那么 A \geq B limφ(x)=AlimΨ(x)=BAB.

定理 6 (复合函数的极限运算法则)设函数 y = f [   g ( x )   ] y = f[\ g(x)\ ] y=f[ g(x) ] 是由函数 u = g ( x ) u = g(x) u=g(x) 与函数 y = f ( u ) y = f(u) y=f(u) 复合而成, f [   g ( x )   ] f[\ g(x) \ ] f[ g(x) ] 在点 x 0 x_0 x0 点某去心邻域内有定义,若 lim ⁡ x → x 0 g ( x ) = u 0 \lim\limits{x \to x_0}{g(x)} = u_0 limxx0g(x)=u0 lim ⁡ u → u 0 f ( u ) = A \lim\limits_{u \to u_0}{f(u)} = A uu0limf(u)=A,且存在 δ > 0 \delta > 0 δ>0,当 x ∈ U ˚ ( x 0 , δ 0 ) x \in \mathring{U}(x_0, \delta _0) xU˚(x0,δ0),有 g ( x ) ≠ u 0 g(x) \ne u_0 g(x)=u0,则
lim ⁡ x → x 0 f [   g ( x )   ] = lim ⁡ u → u 0 f ( u ) = A . \lim\limits_{x \to x_0}{f[\ g(x)\ ]} = \lim\limits_{u \to u_0}{f(u)} = A. xx0limf[ g(x) ]=uu0limf(u)=A.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值