Placement Optimization of UAV-Mounted Mobile Base Stations | Spiral MBS Placement Algorithm | GDC

本文介绍了针对无人机移动基站(MBS)的覆盖优化问题,提出了一种螺旋MBS布局算法。该算法旨在减少为地面终端提供无线覆盖所需的MBS数量,确保每个终端至少在一个MBS覆盖范围内。通过实验对比,螺旋MBS布局算法相比于其他启发式算法和KMeans聚类方法,所需MBS数量最少。
摘要由CSDN通过智能技术生成

课程需要,算法导论小组选了一个无人机基站的课题,搜索资料的时候发现论文Placement Optimization of UAV-Mounted Mobile Base Stations基于无人机覆盖问题提出了一种螺旋MBS布局算法Spiral MBS Placement Algorithm,将这个方法实现了一下并与小组提出的其他方法、还有KMeans聚类方法做了一下比较,记录下论文的大概意思以及实现算法的过程。

研究背景

随着无人机的机动性和经济性的提高,无人机在无线通信系统中具有许多潜在的应用前景。特别是,安装在无人机上的移动基站(MBSs)可以部署在没有战场或灾难现场等基础设施覆盖的地区,提供无线连接。与地面基站(BSs)不同,即使是安装在地面车辆上的基站,安装在无人机上的移动基站也可以部署在任何位置,并沿着仅受其航空特性约束的任何轨迹移动,以便根据已知位置覆盖给定区域的地面终端(GTs)。

研究主旨

在没有固定基础设施的地面通信网络中,无人机车载移动基站(MBSs)是实现无线连接的有效解决方案。而论文旨在尽量减少为一组分布式地面终端(GTs)提供无线覆盖所需的MBSs数量,确保每个GT都在至少一个MBS的通信范围内。改论文中提出了一种连续MBS布局的多项式时间算法,该算法从未覆盖的GTs的面积周界开始,沿着中心的螺旋路径依次放置MBS,直到覆盖所有GTs。

问题描述和建模

问题描述

论文中假设GT位置已知,MBS在固定高度H飞行,UAV-GT信道以LOS链路为主,其信道质量主要取决于UAV和GT的距离,我们考虑了没有地面BSs可用的情况和安装在UAV上的MBSs是通过卫星链路进行反向连接的,每个MBS在地面上的覆盖半径为r,如图所示。
在这里插入图片描述

因此MBS布局问题为在给定的区域为所有的GT提供一个无线覆盖,可以描述为几何磁盘覆盖(GDC)问题。
几何磁盘覆盖问题:在给定的区域内,使用最小数量的给定半径的的磁盘覆盖区域内的K个节点,这是一个NP难问题,[这篇论文][1]中提出了一种名为strip-cover-with-disks algorithm的算法。
为了简单起见,论文假设UAV-GT通信通道由LOS链路控制。还假设发射功率是固定的,并给出了可靠通信所需的接收机信噪比(SNR)的最小值。在LOS模型下,UAV-GT通道功率增益遵循自由空间路径损耗模型,该模型由UAV-GT链路距离决定。此外,我们假设UAV在给定的高度H飞行,其MBS最大覆盖半径投影到地面对应的信噪比阈值由r指定。
为了降低成本,我们的目标是部署最小数量的MBSs(无人机),以便每个GT在其通信半径r内至少有一个MBS提供服务。请注意,这并不排除某些GTs可能被多个MBSs覆盖的可能性。在这种情况下,需要通过适当的信道分配和部署MBSs后的功率控制来解决小区间干扰问题。

问题建模

一个具有K个GTs的无线系统,记为集合K ={1,2,···,K},{ w k w_k wk},k∈K给出的已知位置,其中 w k w_k wk R 2 × 1 R^{2×1} R2×1 代表第k个GT在地面上的位置。用M ={1,…, M}表示待部署的MBSs集合。问题可以表述如下:
在这里插入图片描述
其中|M| = M代表无人机集合M的基数, U m U_m Um R 2 x 1 R^{2x1} R2x1 代表MBs m在水平面上的坐标,|| w k − u m w_k-u_m wkum||欧式距离代表GT k与MBS m映射到水平面上的距离。
(P1)即为GDC问题,即一般NP难问题。GDC问题也与p-center问题有关,目标是确定最小磁盘的p个中心(MBS位置)来覆盖所有K个GT。GDC可以转化为一系列p值不同的p-center问题,然而p-center问题同样是NP难问题。
因此对,

Spiral MBS Placement Algorithm(螺旋MBS布局算法)

论文提出了一种基于连续MBS布局的近似求解P1的启发式算法----Spiral MBS Placement Algorithm。在讲算法前,我们需要明确一些相关概念:

  1. 点集Q的凸包:是指一个最小凸多边形,满足Q中的点或者在多边形边上或者在其内部.
  2. 在下面的算法中我们使用下面约定的称呼:
    1). 边界区域: 连接所有凸多边形上的点的路径(即最后找出来凸多边形),
    2). 边界点 : 凸多边形上的红色点
    3). 内部点:凸多边形内部的绿色点
    在这里插入图片描述

算法主要思想

将MBSs沿未覆盖的GTs集合的边界区域顺序放置,每一个MBS m至少覆盖一个GT k 0 k_0 k0 k 0 k_0 k0是边界点), 与 k 0 k_0 k0的距离大于2*r的GT不在m的覆盖范围内。之后,MBS m将向区域中心内调整其位置,以覆盖尽可能多的未覆盖的GTs:

  1. 首先调整m的位置以覆盖包括 k 0 k_0 k0的更多边界点
  2. 再次调整m的位置以覆盖包括 k 0 k_0 k0和1中的边界点外更多的内部点

当MBS m放置完毕,确定边界区域逆时针方向上距离 k 0 k_0 k0最近且未被覆盖的GT k 0 ′ k_0' k0 ;此时新的边界区域有未覆盖的GTs集合确定且在GT k 0 k_0 k0处缩小,此时选择 k 0 ′ k_0' k0( k 0 ′ k_0' k0

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值