题目描述
解题思路
若n为1,则第1个人一定只会坐在自己的位置上,故答案为1。
若n为2,则第1个人坐在自己位置上和另一个位置上的概率各为0.5,故第2个人坐在自己的座位上的概率为0.5。
若n为3,则第1个人坐在自己位置上、2号位置上和3号位置上的概率各为1/3,
- 若坐在自己位置上则后面的2号必定也会坐在自己位置上,3号也必定坐在自己位置上。
- 若坐在2号位置上则2号必定坐错位置,想想看,若把1号位置看作2号位置,那么此时2号的处境不就相当于n为2时的第1个人吗?所以这种情况3号坐在自己的座位上的概率为0.5。
- 若坐在3号位置上则3号必定坐错位置。
则第3个人坐在自己的座位上的概率为1/3*(1+0.5+0)=0.5。
若n为其他值,则第1个人坐在这n个位置上的概率各为1/n,
- 若坐在自己位置上则后面的2号必定也会坐在自己位置上,3号也必定坐在自己位置上,4号也……第n个人也必定坐在自己位置上。
- 若坐在n号位置上则n号必定坐错位置。
- 若坐在x号位置上(1<x<n),则第2~第(x-1)个人必定会坐在自己位置上,而第x个人必定坐错位置,此时x号的处境就相当于n为(n-x+1)时的第1个人,所以这种情况n号坐在自己的座位上的概率与n为(n-x+1)时的最后一人坐在自己位置上的概率相等。
看到这里,大家应该能想到这题是可以用递归的方法来解的,但是先别急,这还可以再简化。
我们继续讨论n为其他值的情况,由上述讨论,我们可以知道:
- p(n=1) = 1
- p(n=2) = 0.5
- p(n=3) = 0.5
- p(n=4) = 1/4*(1+0+p(n=2)+p(n=3)) = 0.5
- p(n=5) = 1/5*(1+0+p(n=2)+p(n=3)+p(n=4))=0.5
- p(n) = 1/n*(1+0+p(n=2)+p(n=3)+p(n=4)+……+p(n=n-1))=0.5
故简化后为:
p(n)={
1,n=1;
0.5,n>1
}
代码
#include<iostream>
using namespace std;
int main(){
int n;
cin>>n;
if(n==1)printf("1.00000");
else printf("0.50000");
return 0;
}