自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(44)
  • 收藏
  • 关注

原创 视频也能分割?!在云服务器上部署最新视觉大模型SAM2教程、详细代码注释和视频演示

SAM2在云平台上详细部署代码、中文注释和演示

2024-08-06 11:53:52 1208

原创 人脸检测 - MTCNN介绍

1. 构建图像金字塔

2024-07-29 08:59:40 198

原创 ViT & Transformer & Dert

Vit结构Vit - 图像分块嵌入 (Patch embedding)

2024-07-28 14:51:21 261

原创 目标检测(降低误检测率及小目标检测系列笔记)[通俗易懂]

目标检测(降低误检测率及小目标检测系列笔记)[通俗易懂]

2024-07-23 10:43:35 1446

原创 动手学深度学习(2.2)数据预处理

为两列“Alley_Pave”和“Alley_nan”。巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,中的所有条目都是数值类型,它们可以转换为张量格式。中的类别值或离散值,我们。

2024-07-22 15:02:31 660

原创 解决AttributeError: module ‘tensorflow._api.v2.image‘ has no attribute ‘resize_images‘

这是 TensorFlow 图像处理函数中的标准方法。因此,如果你的代码中有。在 TensorFlow 2.x 版本中,的引用,你应该更新它为。

2024-07-22 10:43:20 283

原创 解决keras.objectives在 ‘__init__.py‘ 中找不到引用 ‘objectives‘

【代码】解决keras.objectives在 ‘__init__.py‘ 中找不到引用 ‘objectives‘

2024-07-22 10:39:01 198

原创 解决导入keras.layers 问题

导入 keras.engine 可能会产生No module named 'tensorflow.keras.engine。

2024-07-22 10:35:55 518

原创 目标检测入门

但是,如果预测到的x,y坐标大于1,比如(1.2, 0.7)。这打破了YOLO背后的理论,因为如果我们假设红色框负责预测目标狗,那么狗的中心必须在红色单元中,不应该在它旁边的网格单元中。因此,为了解决这个问题,我们对输出执行sigmoid函数,将输出压缩到区间0到1之间,有效确保中心处于执行预测的网格单元中。网络的输出是S x Sx (5*B+C)的一个tensor(S-尺寸,B-标定框个数,C- 检测类别数,5-标定框的信息)。一般情况下,YOLO不会预测边界框中心的确切坐标。Yolo的缺点: .

2024-07-21 16:12:42 1070

原创 动手学深度学习(2.1)数据操作

为了能够完成各种数据操作,我们需要某种方法来存储和操作数据。 通常,我们需要做两件重要的事:(1)获取数据;(2)将数据读入计算机后对其进行处理。 如果没有某种方法来存储数据,那么获取数据是没有意义的。

2024-07-19 10:10:37 932

原创 InceptionV3代码实现(Pytorch)

Inception网络是CNN发展史上一个重要的里程碑。在Inception出现之前,大部分流行CNN仅仅是把卷积层堆叠得越来越多,使网络越来越深,以此希望能够得到更好的性能。

2024-07-18 11:17:18 1481

原创 笔记:Few-Shot Learning小样本分类问题 + 孪生网络 + 预训练与微调

Few-Shot Learning小样本分类问题 + 孪生网络 + 预训练与微调

2024-07-17 10:17:38 1989

原创 动手学深度学习(1.6 - 1.8)深度学习的成功案例 & 特点 & 第一章小结

工业革命的这一阶段可能对社会的大部分地区产生深远的影响,因为卡车司机和店员是许多国家最常见的工作之一。此外,如果不加注意地应用统计模型,可能会导致种族、性别或年龄偏见,如果自动驱动相应的决策,则会引起对程序公平性的合理关注。同样,上面的列表仅仅触及了机器学习对实际应用的影响之处的皮毛。这种在处理统计问题上新发现的经验主义,加上人才的迅速涌入,导致了实用算法的快速进步。其次,目前还不存在能够自我改进、自我推理、能够在试图解决一般任务的同时,修改、扩展和改进自己的架构的“人工通用智能”工具。

2024-07-16 17:57:49 761

原创 动手学深度学习(1.4 - 1.5)起源 & 深度学习的发展

​随机存取存储器没有跟上数据增长的步伐。 与此同时,算力的增长速度已经超过了现有数据的增长速度。 这意味着统计模型需要提高内存效率(这通常是通过添加非线性来实现的),同时由于计算预算的增加,能够花费更多时间来优化这些参数。 因此,机器学习和统计的关注点从(广义的)线性模型和核方法转移到了深度神经网络。 这也造就了许多深度学习的中流砥柱,如多层感知机 (McCulloch and Pitts, 1943) 、卷积神经网络 (LeCun et al., 1998) 、长短期记忆网络 (Graves and S

2024-07-16 15:45:01 760

原创 动手学深度学习(1.3.3 - 1.3.4)与环境互动 & 强化学习

智能体的动作会影响后续的观察,而奖励只与所选的动作相对应。环境可以是完整观察到的,也可以是部分观察到的,解释所有这些复杂性可能会对研究人员要求太高。最后,在任何时间点上,强化学习智能体可能知道一个好的策略,但可能有许多更好的策略从未尝试过的。强化学习智能体必须不断地做出选择:是应该利用当前最好的策略,还是探索新的策略空间(放弃一些短期回报来换取知识)。)在雅达利游戏中仅使用视觉输入就击败了人类, 以及 AlphaGo 程序在棋盘游戏围棋中击败了世界冠军,是两个突出强化学习的例子。强化学习智能体选择的“

2024-07-16 11:34:23 730

原创 【LeetCode力扣】008.字符串转换整数 (atoi)(Python)

第 2 步:"1337c0d3"(当前没有读入字符,因为这里不存在 '-' 或者 '+')第 2 步:"0-1" (当前没有读入字符,因为这里不存在 '-' 或者 '+')第 2 步:"42"(当前没有读入字符,因为这里不存在 '-' 或者 '+')第 1 步:"1337c0d3"(当前没有读入字符,因为没有前导空格)第 1 步:"0-1" (当前没有读入字符,因为没有前导空格)第 1 步:"42"(当前没有读入字符,因为没有前导空格)加粗的字符串为已经读入的字符,插入符号是当前读取的字符。

2024-07-16 11:26:46 943

原创 机器学习分类结果精度测定 - 混淆矩阵(Confusion Matrix)

混淆矩阵是一种特定的表格布局,用于可视化监督学习算法的性能,特别是分类算法。在这个矩阵中,每一行代表实际类别,每一列代表预测类别。矩阵的每个单元格则包含了在该实际类别和预测类别下的样本数量。通过混淆矩阵,我们不仅可以计算出诸如准确度、精确度和召回率等评估指标,还可以更全面地了解模型在不同类别上的性能。混淆矩阵是可视化工具,特别用于监督学习,在无监督学习一般叫做匹配矩阵。在图像精度评价中,主要用于比较分类结果和实际测得值,可以把分类结果的精度显示在一个混淆矩阵里面。

2024-07-16 10:17:34 3277

原创 【LeetCode力扣】007. 整数反转(Python)

再转换为整数(注意原有符号的还原),最后判断是否溢出。如果反转后整数超过 32 位的有符号整数的范围。将有符号整数转换为字符串,去除符号位,给你一个 32 位的有符号整数。中的数字部分反转后的结果。

2024-07-15 17:46:40 326 1

原创 动手学深度学习(1.3.1 - 1.3.2)监督学习 & 无监督学习

监督学习 & 无监督学习

2024-07-15 17:30:49 638

原创 【LeetCode力扣】006. Z 字形变换(Python)

参考了运行时间最短的代码,其使用的思路就是按列排序后连接。

2024-07-15 15:50:39 295

原创 【LeetCode力扣】005.最长回文子串(Python)

时间,空间复杂度都是O(2^n)

2024-07-15 12:23:24 320

原创 动手学深度学习(1.1 - 1.2)

这个度量在大多数情况是“可优化”的,这被称之为目标函数。

2024-07-15 10:33:34 959

原创 CNN之图像识别

CNN之图像识别

2024-07-14 15:05:44 1005

原创 吴恩达机器学习笔记2.1 - 什么是机器学习

吴恩达机器学习笔记2.1 - 什么是机器学习

2024-07-09 10:08:23 470

原创 图像相似度比较 - 哈希算法

图像相似度比较 - 哈希算法

2024-05-28 09:27:23 1045

原创 OpenCV算法解析 - 最小二乘法&RANSAC思想

OpenCV算法解析 - 最小二乘法&RANSAC思想

2024-05-27 14:55:57 1205

原创 尺度不变特征变换(SIFT)

尺度不变特征变换(SIFT)

2024-05-27 09:16:50 1311

原创 【LeetCode力扣】004.寻找两个正序数组的中位数(Python)

【LeetCode力扣】004.寻找两个正序数组的中位数(Python)

2024-04-08 10:34:58 354 1

原创 【LeetCode力扣】003.无重复字符的最长子串(Python)

【LeetCode力扣】003.无重复字符的最长子串(Python)

2024-04-08 09:52:34 463 1

原创 【LeetCode力扣】002.两数相加(Python)

力扣002.两数相加

2024-04-03 16:42:39 537 1

原创 图像的线性滤波/卷积

图像的线性滤波/卷积理论&实践

2024-04-03 16:27:54 1543 1

原创 实现图像直方图均衡化

图像直方图均衡化理论&实践

2024-04-03 15:09:21 1290 1

原创 图像的双线性插值

图像的双线性插值理论&实践

2024-04-02 11:01:14 551 1

原创 【LeetCode力扣】001.两数之和(Python)

给定一个整数数组 nums 和一个整数目标值 target,请你在该数组中找出 和为目标值 target 的那 两个 整数,并返回它们的数组下标。解释:因为 nums[0] + nums[1] == 9 ,返回 [0, 1]。你可以假设每种输入只会对应一个答案。输入:nums = [2,7,11,15], target = 9。输入:nums = [3,2,4], target = 6。进阶:你可以想出一个时间复杂度小于 O(n2) 的算法吗?输入:nums = [3,3], target = 6。

2024-03-30 10:06:45 572

原创 Python-彩色图像的最邻近插值法

彩色图像的最邻近插值法原理&实践

2024-03-28 16:02:32 387

原创 Python-彩色图像的二值化

彩色图像的二值化 理论&实践

2024-03-28 15:21:54 562

原创 Python-彩色图像的灰度化

图像灰度化原理及实践

2024-03-28 15:06:38 379

原创 2023软工K班结对编程任务

2023软件工程K班结对编程作业

2023-10-12 07:46:49 383 1

原创 【软件定义网络】实验一:SDN拓扑实践 & 实验二:Open vSwitch虚拟交换机实践

实验难度:适中实验过程中遇到的困难与解决办法:刚开始安装虚拟机和配置实验环境的时候,也遇到了不少报错,比如java环境配置,python库安装,ryu插件的安装,基本都是自己通过网上的教程,反复地去尝试,一步一步排除错误。因为是第一次用虚拟机,所以刚开始对各种操作都比较生疏,但经过这一次实验,变得更加熟练。开始做实验的时候,发生了棘手的问题,一个是重启系统后虚拟机启动时候报错,为了解决这个错误,花费了不少时间,终于在一个偏僻的个人网站找到了解决方法;一个是重启虚拟机后所有图标和菜单栏都消失了。

2023-09-18 00:48:48 5730

原创 Go指针基本介绍

指针基本介绍基本数据类型, 变量存的就是值,也叫值类获取变量 i 的地址,用&i指针类型,指针变量存的是一个地址,这个地址指向的空间存的才是值比如:var ptr *int=&numptr指向一个空间,存的是 i 的地址获取指针类型所指向的值,使用*,比如var ptr *int指针变量接收地址修改*ptr值时,会导致ptr指向空间所存的地址对应的空间的所存值改变使用细节值类型,多有对应的指针类型 *数据类型值类型...

2021-10-03 13:11:38 214

MaskRCNN - Pytorch实现(含数据集下载链接)

MaskRCNN - Pytorch实现(含数据集下载链接)

2024-08-11

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除