清华大学公开课线性代数2——第1讲:正定矩阵

这篇博客详细探讨了正定矩阵的概念,包括其充要条件、性质和应用。通过引言引入,讲解了实对称矩阵正定的6个条件及其相互关系,强调了正定矩阵在二次型、合同、惯性定理及函数极值中的作用,还涉及了二次型的分类和在几何形状中的应用。
摘要由CSDN通过智能技术生成

此博客停止更新迁移至SnailDove’s Blog查看本文点击 此处 清华大学线性代数2笔记汇总:线性代数总结
笔记源自:清华大学公开课:线性代数2——第1讲:正定矩阵,涉及:正定矩阵、二次型、合同、惯性定理、Hessian

提示: 如果文中图片看不清文字,请右键单击鼠标,选择在新窗口打开图片,然后放大图片(这边上传之前都是可以看清的,由于网页正文部分大小固定,因此图片被自动缩小以便适配网页),截图部分是课堂ppt老师随手的板书。

引言

正定矩阵的意义

矩阵特征值的正负在求解微分方程和差分方程时,会影响解是否收敛,例如上图如果 λ i &lt; 0 \lambda_i &lt; 0 λi<0那么 e λ i t e^{\lambda_i t} eλit 随着 t → ∞ , e λ i t → 0 t\rightarrow \infty, e^{\lambda_it}\rightarrow0 t,eλit0

主子式

正定矩阵的意义

1st_example_of_principal_minor
2nd_example_of_principal_minor.png

实对称矩阵A正定的充要条件

下列6项条件,满足任意一项即可判定实对称矩阵 A A A为正定矩阵:

prerequisites_of_positive_definite_matrix.png

证明

( 1 ) ⇒ ( 2 ) : (1)\Rightarrow(2): (1)(2): 对实对称矩阵 A A A,那么存在正交阵 Q Q Q,使得 A Q = Q Λ → A = Q Λ Q T AQ=Q\Lambda \rightarrow A=Q\Lambda Q^T AQ=QΛA=QΛQT,其中 Λ = d i a g ( λ 1 , &ThinSpace; . . . &ThinSpace; , λ n ) \Lambda=diag(\lambda_1,\,...\,,\lambda_n) Λ=diag(λ1,...,λn)。于是对于任意非零向量 x x x,有 x T A x = x T Q Λ Q T x = y T Λ y = λ 1 y 1 2 + &ThinSpace; . . . &ThinSpace; + λ n y n 2 &gt; 0 , y = Q T x = ( y 1 , &ThinSpace; . . . &ThinSpace; , y n ) ≠ 0 ⃗ x^TAx=x^TQ\Lambda Q^Tx=y^T \Lambda y=\lambda_1 {y_1}^2+\,...\,+\lambda_n {y_n}^2&gt;0, y=Q^Tx=(y_1,\,...\,,y_n) \ne\vec{0} xTAx=xTQΛQTx=yTΛy=λ1y12+...+λnyn2>0,y=QTx=(y1,...,yn)̸=0

( 2 ) ⇒ ( 1 ) : (2)\Rightarrow(1): (2)(1): A x = λ x ( x ≠ 0 ) Ax=\lambda x(x\ne0) Ax=λx(x̸=0) 0 &lt; x T A x = x T λ x = λ ∣ ∣ x ∣ ∣ 2 0&lt;x^TAx=x^T\lambda x=\lambda||x||^2 0<xTAx=xTλx=λx2,因此所有 λ i &gt; 0 \lambda_i&gt;0 λi>0

( 2 ) ⇒ ( 3 ) : (2)\Rightarrow(3): (2)(3): 由于行列式等于矩阵特征值的乘积,故 ( 2 ) ⇒ ( 1 ) ⇒ ( 3 ) d e t A = λ 1 &ThinSpace; . . . &ThinSpace; λ n &gt; 0 (2)\Rightarrow(1)\Rightarrow (3)det A=\lambda_1\,...\,\lambda_n&gt;0 (2)(1)(3)detA=λ1...λn>

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值