清华大学公开课线性代数2——第12讲:复数与复矩阵

此博客停止更新迁移至SnailDove’s Blog查看本文点击此处

笔记源自:清华大学公开课:线性代数2——第12讲:复数与复矩阵

目录

引言

之前接触的大部分线性代数知识都只考虑实数情形,但复数情形不可避免会遇到。例如 (cosθsinθsinθcosθ) ( c o s θ − s i n θ s i n θ c o s θ ) 没有实特征值(除了极特殊情形),目的:比较实数和复数情形的异同,注意学习复数和实数的区别联系

复数复习:

    • i2=1 i 2 = − 1 , 一个复数 a+bi=z a + b i = z a a 实部(real part) b 虚部(imaginary part),可以把实部 a a 看成x轴分量,虚部 b 看成y轴分量。复数的共轭(complex conjugate) z=a+biz¯=abi z = a + b i → z ¯ = a − b i 长度 |z|=a2+b2=(abi)(a+bi)=zz¯ | z | = a 2 + b 2 = ( a − b i ) ( a + b i ) = z z ¯ z z 的长度不能定义为 ( a + b i ) 2 ,长度必须是正值,如果把复数 z z 看成一个2维向量,那么它的长度显然就是定义中给出的), 矩阵的共轭定义为: A = ( a i j ) n × n , a i j C A ¯ = ( a i j ¯ ) n × n 性质 AB¯¯¯¯¯¯¯¯=A¯B¯ zz¯=|z|2 A B ¯ = A ¯ B ¯   z z ¯ = | z | 2
    • {长度为1(单位圆上)的复数} {二阶旋转矩阵},且保持乘法。 z=cosθ+isinθA2=(cosθsinθsinθcosθ) z = c o s θ + i s i n θ → A 2 = ( c o s θ − s i n θ s i n θ c o s θ ) 。验证性质: z1=eiθ1,z2=eiθ2Az1=(cosθsinθsinθcosθ),Az2=(cosθsinθsinθcosθ)z1z2=ei(θ1+θ2)=(cos(θ1+θ2)sin(θ1+θ2)sin(θ1+θ2)cos(θ1+θ2))=Az1z2 z 1 = e i θ 1 , z 2 = e i θ 2 → A z 1 = ( c o s θ − s i n θ s i n θ c o s θ ) , A z 2 = ( c o s θ − s i n θ s i n θ c o s θ ) → z 1 z 2 = e i ( θ 1 + θ 2 ) = ( c o s ( θ 1 + θ 2 ) − s i n ( θ 1 + θ 2 ) s i n ( θ 1 + θ 2 ) c o s ( θ 1 + θ 2 ) ) = A z 1 z 2
    • 欧拉公式(Euler formula) eiθ=cosθ+isinθ e i θ = c o s θ + i s i n θ 极分解(polar decomposition) z=reiθ=r(cosθ+isinθ)zn=rneinθ=rn(cos(nθ)+isin(nθ)) z = r e i θ = r ( c o s θ + i s i n θ ) → z n = r n e i n θ = r n ( c o s ( n θ ) + i s i n ( n θ ) ) ,这里z的公式中三角函数部分长度为1,所以r即z的长度,这样任何一个复数都可以用 reiθ r e i θ 表示。
    • 单位根 xn=1 x n = 1 有n个复根 e2kπin,k=0,1,2,,n1 e 2 k π i n , k = 0 , 1 , 2 , … , n − 1 ,令 ω=e2πin1+ω+ω2++ωn1=0 ω = e 2 π i n → 1 + ω + ω 2 + ⋯ + ω n − 1 = 0 ,例如:求 (1+i)81+i=2eiπ4,(1+i)8=(2)8ei2π=16 ( 1 + i ) 8 ← 1 + i = 2 e i π 4 , ( 1 + i ) 8 = ( 2 ) 8 e i 2 π = 16
    • 代数基本定理: anxn++a1x+a0=0,aiC a n x n + ⋯ + a 1 x + a 0 = 0 , a i ∈ C 有n个复数根(可能重复),设 aiR,anxn++a1x+a0=0 a i ∈ R , a n x n + ⋯ + a 1 x + a 0 = 0 的非实数的复根也是成对出现,即若 z=a+bi(b0) z = a + b i ( b ≠ 0 ) 是它的根,则 z¯=abi z ¯ = a − b i 也是它的根,复数根是成对出现的。 奇次实系数方程总有一个实根。(注:公开课字幕内容如下:因为我们知道复根是成对出现的,所以对一个实系数方程,它的复根实际上是2的倍数,因为它是成对出现的,但是奇数次实系数呢,所以它必然除了复根应该有一个实根,不然的话它只有偶数的根,这样就跟它奇数次矛盾)。
    • 实系数多项式(次数 1 ≥ 1 )的 f(x) f ( x ) 可分解成 f(x)=a(xλ1)n1(xλs)ns(x2b1x+c)e1(x2btx+c)et f ( x ) = a ( x − λ 1 ) n 1 ⋯ ( x − λ s ) n s ( x 2 − b 1 x + c ) e 1 ⋯ ( x 2 − b t x + c ) e t λi λ i 即实数根,后 t t 项即复数根给出来的,后面这种形式无法写成实根的一次形式,也就是它的判别式小于0(有复数根),不能写成前 s 项的形式。例如: xm1=k=0m1(xωk),ωk=ei2kπm x m − 1 = ∏ k = 0 m − 1 ( x − ω k ) , ω k = e i 2 k π m ωmk=ei2(mk)πm=ei2π(1km)=cos(2π(1km))+isin(2π(1km))=cos(2kπm)isin(2kπm)=ωk¯¯¯¯¯,km<1(xωk)(xωmk)=x2(ωk+ωmk)x+(ωkωmk)=x22cos(2kπmx)+1 ω m − k = e i 2 ( m − k ) π m = e i 2 π ( 1 − k m ) = c o s ( 2 π ( 1 − k m ) ) + i s i n ( 2 π ( 1 − k m ) ) = c o s ( 2 k π m ) − i s i n ( 2 k π m ) = ω k ¯ , k m < 1 ⇒ ( x − ω k ) ( x − ω m − k ) = x 2 − ( ω k + ω m − k ) x + ( ω k ω m − k ) = x 2 − 2 c o s ( 2 k π m x ) + 1 , 同理可得: xm+1=k=0m1(xξk),ξk=ei(π+2kπ)m x m + 1 = ∏ k = 0 m − 1 ( x − ξ k ) , ξ k = e i ( π + 2 k π ) m

例题:证明 cosπ2n+1cos2π2n+1cosnπ2n+1=12n c o s π 2 n + 1 c o s 2 π 2 n + 1 ⋯ c o s n π 2 n + 1 = 1 2 n
要证明这个需要以下3点:
(1) 1ei2θ=1cos2θisin2θ=2cosθ(cosθ+isinθ)|1cos2θisin2θ|=2|cosθ| − 1 − e i 2 θ = − 1 − c o s 2 θ − i s i n 2 θ = − 2 c o s θ ( c o s θ + i s i n θ ) ⇒ | − 1 − c o s 2 θ − i s i n 2 θ | = 2 | c o s θ |
(2)设 ω=cos2π2n+1+isin2π2n+1=ei2π2n+1(|1ω|=2|cos(π2n+1)| ω = c o s 2 π 2 n + 1 + i s i n 2 π 2 n + 1 = e i 2 π 2 n + 1 ( ⇒ | − 1 − ω | = 2 | c o s ( π 2 n + 1 ) | ,那么 x2n+x2n1++1=(xω)(xω2)(xω2n)() x 2 n + x 2 n − 1 + ⋯ + 1 = ( x − ω ) ( x − ω 2 ) ⋯ ( x − ω 2 n ) ( ∗ ) 推导如下: x2n+11=(x1)(xω)(xω2)(xω2n)x2n+11x1=(xω)(xω2)(xω2n)1(1x2n+1)1x=(xω)(xω2)(xω2n) x 2 n + 1 − 1 = ( x − 1 ) ( x − ω ) ( x − ω 2 ) ⋯ ( x − ω 2 n ) ⇒ x 2 n + 1 − 1 x − 1 = ( x − ω ) ( x − ω 2 ) ⋯ ( x − ω 2 n ) ⇒ 1 ( 1 − x 2 n + 1 ) 1 − x = ( x − ω ) ( x − ω 2 ) ⋯ ( x − ω 2 n )
(3) cos(2n+1k)π2n+1=coskπ2n+1 c o s ( 2 n + 1 − k ) π 2 n + 1 = c o s k π 2 n + 1
() ( ∗ ) 等式中 x=1 x = − 1 ,且取两边长度 1=|(1ω)(1ω2)(1ω2n) 1 = | ( − 1 − ω ) ( − 1 − ω 2 ) ⋯ ( − 1 − ω 2 n ) 中右边每一项利用(1)式子得到 |1ω|=2|cosπ2n+1|,|1ω2|=2|cos2π2n+1|,|1ωn|=2|cosnπ2n+1| | − 1 − ω | = 2 | c o s π 2 n + 1 | , | − 1 − ω 2 | = 2 | c o s 2 π 2 n + 1 | , … | − 1 − ω n | = 2 | c o s n π 2 n + 1 |

从n+1项起根据(3)得:

|1ωn+1|=2|cos(n+1)π2n+1|=2|cos(2n+1n)π2n+1|=2|cos(πnπ2n+1)|=2|cos(nπ2n+1)|=|1ωn
  • 3
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值