清华大学公开课线性代数2——第3讲:奇异值分解

本文深入探讨线性代数中的奇异值分解(SVD),讲解AATAAT与ATAATA的特征值、特征向量及其与SVD的关系。通过实例展示了如何求解SVD,并解释了SVD在图像压缩等领域的应用。
摘要由CSDN通过智能技术生成

此博客停止更新迁移至SnailDove’s Blog查看本文点击此处

笔记源自:清华大学公开课:线性代数2——第3讲:奇异值分解

提示:如果文中图片看不清文字,请右键单击鼠标,选择在新窗口打开图片,然后放大图片(这边上传之前都是可以看清的,由于网页正文部分大小固定,因此图片被自动缩小以便适配网页),截图部分是课堂ppt老师随手的板书。

目录

前言

对角矩阵是我们最喜欢的一类矩阵,对能够相似于对角阵的矩阵能方便地计算其幂和指数,对不能相似于对角阵的方阵。上节课我们讨论了如何求出其尽可能简单的相似标准形及Jordan标准形以上讨论的都是方阵。那么对m乘n的矩阵我们如何来对它进行对角化呢?

线性代数中最重要的一类矩阵分解即奇异值分解,从而回答以上的问题。对角矩阵是我们最喜欢的一类矩阵,因为给定一个对角阵立即就可以得到它的特征值,行列式,幂和指数函数等等。对角矩阵的运算跟我们熟悉的数的运算有很多相似之处,而一个n阶的矩阵相似于对角阵当且仅当它存在着n个线性无关的特征向量。
preface_SVD
特别地,实对称矩阵一定会正交相似于对角阵,也就是说给你一个实对称矩阵,一定存在着正交矩阵 Q Q 把它的列向量记成 v 1 vn v n ,它能够满足 QTAQ Q T A Q 等于 λ λ λ λ 是一个对角阵,它的对角元是 A A 的特征值,那么其中 Q 的列向量 vi v i ,它是矩阵 A A 的属于特征值, λ i 的特征向量,也就是满足 Avi A v i 等于 λivi λ i v i 。我们现在有个问题是说,如果对于 m×n m × n 的一个矩阵,我们如何来”对角化”它。那么也就是说在什么意义上,我们能够尽可能地。把 m×n m × n 的一个矩形的阵向对角阵靠拢,今天我们来讨论矩阵的奇异值分解它是线性代数应用中,最重要的一类矩阵分解。

AAT A A T ATA A T A 的特性

AAT A A T ATA A T A 的特征值

1st_property_of_AAT

AAT A A T ATA A T A 非0特征值集合

2nd_property_of_AAT

ATA A T A AAT A A T 的特征向量

orthonormal_eigenvectors_of_AAT

ui:=AviσiRm(1ir) u i := A v i σ i ∈ R m ( 1 ≤ i ≤ r ) ,则 AATui=A(ATAviσi)=AATAviσi=A

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值