贝叶斯理论


贝叶斯理论

 贝叶斯首先提出了贝叶斯定理,主要是为了解决一个逆概率的问题,但是在之前人们已经能够解决正向概率问题,那什么是正向概率
举个例子:
  比如一个抽奖桶例有10个球,里面有2个白球,8个黑球,抽到白球,就算中奖,伸手进去随便模出一颗球,摸出是中奖球的概率有多大。
 已知信息——>未知信息(中奖概率)
中奖概率=中奖球数(2个白球)/球总数(2个白球+8个黑球)=2/10
————————————
但是,贝叶斯解决的是一个逆概率的问题,在上面的例子,假如我们并不知道抽奖桶里有什么,而是摸出一个球,通过观察这个球的颜色,来预测这个桶里面白球与黑球的比例
 未知信息——>已知信息

这个预测其实就可以用贝叶斯定理来做.为什么贝叶斯定理在现实生活中这么有用呢?
 这是因为现实生活中的问题,大部分都是像上面的"逆概率"问题.因为生活中绝大多数决策面临的信息都是不全的﹐我们手中只有有限的信息.既然无法得到全面的信息﹐我们就只能在信息有限的情况下,尽可能做出一个好的预测.

公式:

在这里插入图片描述

举个例子:

 小明很喜欢吃蛋糕,它偶然听到有人推荐星巴克的蛋糕很好吃,那么小明现在就想知道星巴克的蛋糕是否真的好吃?

首先分析给的已知信息和未知信息:

  • 求解的问题:星巴克的蛋糕很好吃,记为A事件
  • 已知条件:有人推荐星巴克的蛋糕,记为B事件
    所以,P(A|B)表示有人推荐星巴克蛋糕事件B发生后,星巴克蛋糕很好吃A事件发生的概率。

事件A:好吃
事件B:有人推荐
根据贝叶斯公式,写出以下公式:P(A|B)=P(A)P(B|A)/P(B)

P(A|B)表示有人推荐星巴克蛋糕事件B发生后,星巴克蛋糕很好吃A事件发生的概率,称为后验概率
P(A) 好吃的概率,称为先验概率
P(B|A) / P(B)为可能性函数

从以上公式,需要知道4个内容:

  • (1)先验概率:把P(A)称为先验概率,也就是在不知道B事件发生的前提下,我们对A 事件的一个主观判断;
  • (2)可能性函数:P(B|A) / P(B)称为可能性函数,也就是一个调整因子,也就是新信息B带来的调整。作用就是将先验概率(之前的主观判断)调整到更接近真实概率。
  • 可能性函数可以理解为新信息过来后,对先验概率的一个调整。
  • 如果可能性函数"P(B|A) / P(B)">1,意味着 “先验概率”增强了,事件A发生的可能性变大;可能性函数=1,则无助于判断事件A的可能性;小于1,意味着事件A发生的可能性变小;

  • (3)后验概率:P(A|B)称为后验概率,即在B事件发生后,我们对A事件概率的重新评估
  • (4)类条件概率:P(B|A)

类条件概率的计算:

利用极大似然估计进行计算
离散情况:计算出的结果为相应样本出现的频率
连续情况:服从正态分布,计算出的结果为样本均值和方差,代入到概率密度函数中

关键思想

先根据以往经验预估一个先验概率“P(A)”,然后加入新信息(实验结果B),这样就有了新的信息,我们对事件A的预测更加准确。
要求解的问题
已知信息
在这里插入图片描述

因此,贝叶斯定理可以理解为下面的式子:
后验概率(新信息出现后的A概率)=先验概率(A概率)X 可能性函数(新信息带来的调整)

底层思想

贝叶斯的底层思想就是:
 如果我能掌握一个事情的全部信息,我当然能计算出一个客观概率(古典概率).可是生活中绝大多数决策面临的信息都是不全的﹐我们手中只有有限的信息.既然无法得到全面的信息﹐我们就在信息有限的情况下,尽可能做出一个好的预测.也就是﹐在主观判断的基础上,你可以先估计一个值(先验概率),然后根据观察的新信息不断修正(可能性函数)
 如果用图形表示就是这样的:
在这里插入图片描述

贝叶斯分类

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

朴素贝叶斯

举个例子:
 假如A有个题不会写,去网站寻求帮助。网站上有20个人回复了A,但是A能分辨出这20份中有13份是答案,暂且叫X
6份是问题,暂且叫Y
但是有1份回复没有看懂,暂且叫为Z

于是打算按照回复中出现的关键词来给Z进行分类,是属于X还是属于Y?

关键词:计算机4、人工智能3、贝叶斯2 共9
B: P(X)=13/19
不同关键词在X中出现的概率如下:
P(计算机|X)=4/9 p(人工智能|X)=3/9 p(贝叶斯|x)=2/9

关键词:计算机0、人工智能3、贝叶斯4 共7
C:P(Y)=6/19
不同关键词在Y中出现的概率如下:
P(计算机|Y)=0/7 p(人工智能|Y)=3/7 p(贝叶斯|Y)=4/7

Z中出现的关键词:贝叶斯 人工智能
猜测这是X的概率:P(X)P(贝叶斯|X)p(人工智能|X)=m

猜测这是Y的概率:P(Y)P(贝叶斯|Y)p(人工智能|Y)=n
若m>n,则判为Z属于X

以上就是朴素贝叶斯法。
在朴素贝叶斯算法中,假如两个特征之间是相互独立的,在以上的例子中,认为关键词相互独立,则他们的顺序和上下文关系并不影响结果,哪怕他们表达的意思天差地别,维度之间的相互独立的假设,实在太过于简单粗暴,因此被称为朴素的贝叶斯法。
来举另一个例子:
假如有一段话,
这是贝叶斯法,这是计算机
这是贝叶斯,这也是贝叶斯
根据第一个例子可以知道,Y中没有计算机这一关键词,
P(X)P(贝叶斯|X)P(计算机|X)=u
p(Y)P(贝叶斯|Y)P(计算机|Y)=0
可以看到,在Y中,计算机这个关键词没有出现过,所以计算结果为0,因此可以判断为X。

为了解决等0元素的出现,则需要拉普拉斯平滑化处理,即对每一个关键词上面人为增加一个出现的次数,保证每一项都不为0,然后重新计算每个关键词出现的概率。
使用平滑后的结果,再计算就可以得到正确结果。

朴素贝叶斯分类的scikit-learn实现

朴素贝叶斯分类的三种形式

高斯分布(正态分布)

  • Scikit-learn实现:
     class sklearn.naive_bayes.GaussianNB()
  • 方法
     fit(X_train, y_train): 在训练集上训练模型
     predict(X_test): 用训练好的模型来预测测试集X_test ,返回测试集对应的标签 y
     score(X_test, y_test): 在测试集上的预测的准确率

伯努利分布(0-1分布)

  • Scikit-learn实现:
     class sklearn.naive_bayes. BernoulliNB(alpha=0.01, binarize=0.0, fit_prior=True)
  • 方法
     fit(X_train, y_train): 在训练集上训练模型
     predict(X_test): 用训练好的模型来预测测试集X_test ,返回测试集对应的标签 y
     score(X_test, y_test): 在测试集上的预测的准确率

伯努利分布的朴素贝叶斯分类只适用于处理特征离散(0、1)情况

多项分布

  • Scikit-learn实现:
     class sklearn.naive_bayes. MultinomialNB(alpha=0.01, fit_prior=True)
  • 方法
     fit(X_train, y_train): 在训练集上训练模型
     predict(X_test): 用训练好的模型来预测测试集X_test ,返回测试集对应的标签 y
     score(X_test, y_test): 在测试集上的预测的准确率

多项式分布的朴素贝叶斯分类只适用于处理特征离散情况

TF-IDF算法(单词文本处理时使用)

  • TF-IDF的主要思想
     如果某个单词在一篇文章中出现的频率TF高,并且在其他文章中很少出现(IDF高),则认为此词或者短语具有很好的类别区分能力,适合用来分类。
  • TF-IDF计算
     实际上是:TF * IDF
     TF词频(Term Frequency):词在文档中出现的频率
     逆向文件频率(inverse document frequency,IDF):某一特定词语的IDF,由总文件数目除以包含该词语之文件的数目,再将得到的商取对数即可

注意:
 为了便于不同文章的比较,进行"词频"标准化
TF=某词在文档中出现的次数/该文档的总次数
在这里插入图片描述

举个例子:
 TF-IDF计算例子:

beijing的在第1篇文本中的频次为1.0:TF(beijing,d1)=1.0
beijing只在第1篇文本中出现过:DF(d,beijing)=1, nd=4

代入平滑后的IDF计算TF-IDF:
1.0*(1+log((4+1)/(1+1))) = 1.9162907318

chinese的在第1篇文本中的频次为2.0,TF(chinese,d1)=2.0
chinese只在4篇文本中都出现过:DF(d,beijing)=4,nd=4

代入平滑后的IDF计算TF-IDF :
2.0*(1+log((4+1)/(4+1)))=2.0

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值