各个大模型官方提示词模板(建议收藏)

大家好,我是R哥。

今天,R 哥带大家盘点各大主流 AI 官方提供的提示词模板,把提示词学会用好了,就能起飞!🚀

各个大模型官方提示词模板

1、DeepSeek

https://api-docs.deepseek.com/zh-cn/prompt-library/

2、OpenAI

https://platform.openai.com/docs/examples

3、通义千问

https://tongyi.aliyun.com/blog/192634634

4、Claude

https://docs.anthropic.com/zh-CN/prompt-library/library

5. Gemini

https://cloud.google.com/vertex-ai/generative-ai/docs/prompt-gallery?hl=zh-cn

< END >

学习资料:

DeepSeek 从入门到精通手册(免费领取)

DeepSeek 如何赋能职场应用(免费领取)

DeepSeek 普通人如何获取红利(免费领取)

DeepSeek + DeepResearch 手册(免费领取)

推荐阅读:

DeepSeek 是什么?

DeepSeek-R1 1.5b ... 671b 都是什么鬼?

DeepSeek-R1 本地部署硬件配置清单

DeepSeek-R1 本地部署实战教程来了

52 条 DeepSeek 喂饭级指令,非常齐全!

更多 ↓↓↓ 关注公众号 ✔ 标星⭐ 哦

### 关于大规模语言模型提示词设计的最佳实践 #### 设计原则 在构建有效的提示词时,需遵循一些基本原则来确保模型能够按照预期工作。这些原则包括但不限于提供清晰具体的指令、保持上下文连贯以及合理控制长度[^2]。 #### 模板结构 一个好的 `prompt` 应该具有明确的任务描述部分,这有助于引导模型理解所需执行的操作;同时还可以加入示例数据作为辅助说明,帮助提高输出质量。以下是基于此理念的一个通用模板: ```plaintext Instruction: [具体任务定义] Context (if any): [背景信息或先前对话记录] Example Input: [可选的例子输入] Expected Output Format: [期望的结果格式] ``` #### 实际应用案例 下面给出几个实际应用场景下的 `prompt` 示例,展示了如何根据不同目的调整上述基本框架内的各个组件: ##### 场景一:文本摘要生成 当希望从一段较长的文章中提取核心要点时,可以这样设置 `prompt`: ```plaintext Instruction: Generate a concise summary of the following text. Input Text: The history of artificial intelligence dates back to ancient times... Expected Length: About 50 words. ``` ##### 场景二:编程题解答 对于寻求特定技术难题解决方案的情况,则应更加注重细节和技术术语的确切表达: ```plaintext Instruction: Provide an efficient Python function that reverses strings without using built-in methods. Code Snippet Context: Assume standard libraries are available but not direct string manipulation functions like reverse(). Test Case Example: For input "hello", output should be "olleh". ``` ##### 场景三:创意写作激发 如果目的是鼓励创造性思维并获得独特的故事构思,那么可以在 `prompt` 中引入更多开放性和想象力元素: ```plaintext Instruction: Create a short story set in a world where everyone can communicate with animals, focusing on friendship between humans and creatures. Tone/Mood Suggestion: Heartwarming yet adventurous. Character Ideas: A young girl named Lily who discovers her ability while lost in forest; talking fox as guide. ``` 通过以上实例可以看出,在不同的业务场景下灵活运用这些要素组合,可以帮助我们创建出既符合逻辑又充满个性化的高质量提示词,从而充分发挥大型预训练模型的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值