棋盘问题
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1 #. .# 4 4 ...# ..#. .#.. #... -1 -1
Sample Output
2 1
思路:
k 颗棋子不能放在同行同列,则需要标记行和列。这里我采用按行递增的搜索方式,不会出现行重复的情况,则不用标记行,只需要标记列,我用变量col[j](1<=j<=n)标记,先全部初始化为0,若用到此列,则标记为1,避免列重复。
#include<iostream>
using namespace std;
int n, k,num,ans;
bool col[9];//列标记,防止列重复
char map[9][9];
void DFS(int begin,int num)
{
for (int j = 1; j <= n; j++)
{
if (map[begin][j]=='#' && col[j]==0)
{
if (num == 1)
ans++;
else
{
col[j] = 1;
for (int dep = begin + 1; dep <= n - num+2; dep++)
DFS(dep, num - 1);
col[j] = 0;
}
}
}
}
int main()
{
char ch;
int i;
while (cin>>n>>k)
{
if (n == -1 && k == -1)
break;
memset(col, 0, sizeof(col));
ans = 0;
for (i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
cin >> map[i][j];
}
for (i = 1; i <= n - k+1; i++)//每行只能放1个棋子,需要k行
DFS(i, k);//从第i行开始,放k个棋子
cout << ans << endl;
}
return 0;
}
注:
for (i = 1; i <= n - k+1; i++)//每行只能放1个棋子,需要k行
DFS(i, k);//从第i行开始,放k个棋子
表示k颗棋子最起码需要k行来存放,多余的行可能形成另一种放法。如第一个输入案例:
2 1 #. .#两行只需要放一颗棋子,则有两种可能,若这可能满足行、列不重复的条件,会是一种放法。