Consider the fraction, n/d, where n and d are positive integers. If n<d and HCF(n,d)=1, it is called a reduced proper fraction.
If we list the set of reduced proper fractions for d ≤ 8 in ascending order of size, we get:
1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1/3, 3/8, 2/5, 3/7, 1/2, 4/7, 3/5, 5/8, 2/3, 5/7, 3/4, 4/5, 5/6, 6/7, 7/8
It can be seen that there are 3 fractions between 1/3 and 1/2.
How many fractions lie between 1/3 and 1/2 in the sorted set of reduced proper fractions for d ≤ 12,000?
#include <iostream>
using namespace std;
int gcd(int a, int b) //默认b比a大
{
while (a)
{
b = b - a;
if (a > b)
{
int tmp = a;
a = b;
b = tmp;
}
}
return b;
}
int main()
{
unsigned long long count = 0;
for (int q = 2; q <= 12000; q++)
{
for (int p = q / 3 + 1; p <= (q - 1) / 2; p++)
{
if (gcd(p, q) == 1)
count++;
}
}
cout << count << endl;
system("pause");
return 0;
}