Transformer家族

在《Transformer原理》中我们介绍了,现在很多大模型都是基于Transformer,其中最出名就是GPT和BERT模型,在GPT和BERT模型被提出来之后,NLP领域也出现了基于Transformer结构的模型,按照模型结构基本可以分为三类:

  • 纯Encoder模型(典型代表BERT,仅使用Transformer中的编码器),又称为自编码(auto-encoding)Transformer模型。

  • 纯Decoder模型(典型代表GPT,仅使用Transformer中的解码器),又称为自回归(auto-regressive)Transformer模型。

  • Encoder-Decoder模型(典型代表BART、T5),又称为Seq2Seq(sequence-to-sequence)Transformer模型。


    414c4b44af050bb41c53784b32c96bf5.jpeg


1 纯Encoder分支

纯Encoder模型通常是通过遮掩句子中的任意词语,让模型进行预测,它通常比较适用于理解整个句子语的任务比如句子分类、命名实体识别、情感分析。在预测的时候是可以看到所有输入词。

887f8532ab3674289a8fadc654d89a8a.jpeg


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序猿阿三

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值