小论线性变换

任何一个线性变换都可以用一个矩阵 A 来表示。

EIG分解

特征值分解的适应情况是:

  1. 矩阵是方阵
  2. 矩阵有足够的特征向量
  3. 如果矩阵有不相同的特征值 ,那么肯定有足够的特征向量

对角矩阵本质上是每个轴上的不耦合地伸缩。

A1=[1002],A2=[1021]

图片名称图片名称

如果矩阵的特征向量充满了整个空间,并且都不为0,那么可以进行 SΛS1 对角化分解。
矩阵对角化的本质就是换一组或者两组基底,使得在各组基底下的坐标不耦合,像对角矩阵那样伸缩

A=[1022],D=[1002]

图片名称图片名称

对称矩阵,一定可以 SΛS1 对角化,特征值是实数,特征向量标准正交

A=[1222],D=[0.5616003.5616]

图片名称图片名称

特征值如果出现0(行列式等于0,不满秩),但是仍然有足够的特征向量,那么同样可以 SΛS1 对角化。
但是这个时候因为特征值出现0,所以肯定存在某一个维度信息的丢失,表现在图里面就是一个平面图形经过 A 映射后只剩下一条线,无论我们选取的基是标准及还是特征向量基。

注意:特征向量是否足够与特征值有没有等于0的数没有必然联系。

A=[1000],D=[0001]

图片名称图片名称

不能对角化,就意味着不能进行 SΛS1 分解,分解的话会提示错误。

警告: 矩阵接近奇异值,或者缩放错误。结果可能不准确。RCOND = 5.551115e-17。

A=[1021],D=[1001]

图片名称图片名称

SVD分解

如何将不能对角化的矩阵对角化,不存在奇异值为0的情况,矩阵是方阵

A=[1021],S=[2.4142000.4142]

图片名称图片名称

特征值与奇异值

如果一个矩阵的秩为 r ,表明这个矩阵表示的空间是r维的,不等于0的特征值或者奇异值的个数是 r <script type="math/tex" id="MathJax-Element-636">r</script>,特征值或者奇异值的绝对值表示对应维度的方差,方差越大表明在这个维度上信息量越大,这个维度也就越重要。

参考代码

% 画图辅助函数
function [] = px(X,p1,p2)
plot(X(1,:),X(2,:),p1)
hold on
plot(X(1,:),X(2,:),p2)
hold off
axis equal
%axis([0 2 0 2])
% 主函数

%% 耦合与解耦
X = [0 0 1 1 0    
0 1 1 0 0];
% 对角矩阵
A2 = [1 0
    0 2];
X2 = A2*X;
px(X,'ro','r-')
hold on
px(X2,'b*','b:')
hold off;


% 矩阵耦合的情况
A2 = [1 2
    0 1];
X2 = A2*X;
px(X,'ro','r-')
hold on
px(X2,'b*','b:')
hold off;



%% 解耦,矩阵可以对角化,有足够的特征向量,按照SDS^{-1}分解

A2 = [1 2
    0 2];
% %D =
% 
%      1     0
%      0     2
X2 = A2*X;
px(X,'ro','r-')
hold on
px(X2,'b*','b:')
hold off;

% 换坐标系,从单位坐标系换到以特征向量为基底的坐标系
[V,D] = eig(A2)
V*D*inv(V)

Xnew = inv(V)*X;  %Xnew是原正方形数据X在新的基下面的坐标

Xnew2 = inv(V)*A2*V*Xnew %Xnew2是经过线性变换A2后在新的基底下的坐标

% 选择特征向量方向为新的坐标,在新的坐标系下横坐标不变,纵坐标是原来的2倍。
px(Xnew,'ro','r-')
hold on
px(Xnew2,'b*','b:')


gtext('A = [1 2 ; 0 1]')
%% 对称矩阵,一定可以对角化,特征值是实数,特征向量标准正交
% 对称矩阵就像对角矩阵那样
% 更深刻地去理解特征值与特征向量
% 特征值本质上是找到了一组完整的不缺失的特征向量后,可以进行解耦地伸缩变换,每个基上伸缩变换的系数
% 如果和压缩联系在一起的话,如果特征向量的长度都一样,那么特征值的绝对值越大表明在这个方向
% 的伸缩越大,理解成方差越大,因此可以利用这种分解去找到最大的方差,寻找如何包含更多的信息。
% D =
% 
%    -0.5616         0
%          0    3.5616
A2 = [1 2
    2 2];
X2 = A2*X;
px(X,'ro','r-')
hold on
px(X2,'b*','b:')
hold off;

% 换坐标系,从单位坐标系换到以特征向量为基底的坐标系
[V,D] = eig(A2)
V*D*inv(V)

Xnew = inv(V)*X;  %Xnew是原正方形数据X在新的基下面的坐标

Xnew2 = inv(V)*A2*V*Xnew %Xnew2是经过线性变换A2后在新的基底下的坐标

% 选择特征向量方向为新的坐标,在新的坐标系下横坐标不变,纵坐标是原来的2倍。
px(Xnew,'ro','r-')
hold on
px(Xnew2,'b*','b:')


% 判断是不是符合
mean((D(1,1)*Xnew(1,:) - Xnew2(1,:) ) < 1e-5)
mean((D(2,2)*Xnew(2,:) - Xnew2(2,:) ) < 1e-5)

%% 特征值如果出现0(行列式等于0,不满秩)是什么含义呢
% 在某个基上的分量丢失,原来的系数不为0可能是因为和其他基耦合
% 对角化后D上存在着为0的元素,有几个0说明有几个维度丢失。
A2 = [1 0
    0 0];
X2 = A2*X;
px(X,'ro','r-')
hold on
px(X2,'b*','b:')
hold off;

% 换坐标系,从单位坐标系换到以特征向量为基底的坐标系
[V,D] = eig(A2)
V*D*inv(V)

Xnew = inv(V)*X;  %Xnew是原正方形数据X在新的基下面的坐标

Xnew2 = inv(V)*A2*V*Xnew %Xnew2是经过线性变换A2后在新的基底下的坐标

% 选择特征向量方向为新的坐标,在新的坐标系下横坐标不变,纵坐标是原来的2倍。
px(Xnew,'ro','r-')
hold on
px(Xnew2,'b*','b:')


%% 不能对角化意味着什么
% 找不到上面那些好的性质,特征向量之间线性相关充满不了整个空间
% 但是只是在变换前后同一个基的条件下找不到
A2 = [1 2
    0 1];
X2 = A2*X;
px(X,'ro','r-')
hold on
px(X2,'b*','b:')
hold off;

% 换坐标系,从单位坐标系换到以特征向量为基底的坐标系
[V,D] = eig(A2)
V*D*inv(V)

Xnew = inv(V)*X;  %Xnew是原正方形数据X在新的基下面的坐标

Xnew2 = inv(V)*A2*V*Xnew %Xnew2是经过线性变换A2后在新的基底下的坐标

% 选择特征向量方向为新的坐标,在新的坐标系下横坐标不变,纵坐标是原来的2倍。
px(Xnew,'ro','r-')
hold on
px(Xnew2,'b*','b:')

% 判断是不是符合
mean((D(1,1)*Xnew(1,:) - Xnew2(1,:) ) < 1e-5)
mean((D(2,2)*Xnew(2,:) - Xnew2(2,:) ) < 1e-5)


%% 如何将不能对角化的矩阵对角化,不存在奇异值为0的情况,矩阵是方阵
% SVD,构建起两个不同的坐标基
% 与特征值相对的,这里引入的是奇异值
% S =
% 
%     2.4142         0
%          0    0.4142
A2 = [1 2
    0 1];
[V,D] = eig(A2)
V

[U,S,V] = svd(A2);
Xnew = inv(V)*X;  %Xnew是原正方形数据X在新的基下面的坐标

Xnew2 = inv(U)*A2*V*Xnew; %Xnew2是经过线性变换A2后在新的基底下的坐标

% 选择特征向量方向为新的坐标,在新的坐标系下横坐标不变,纵坐标是原来的2倍。
px(Xnew,'ro','r-')
hold on
px(Xnew2,'b*','b:')

% 判断是不是符合
mean((S(1,1)*Xnew(1,:) - Xnew2(1,:) ) < 1e-5)
mean((S(2,2)*Xnew(2,:) - Xnew2(2,:) ) < 1e-5)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值