一文搞懂DeepSeek - 基础模型(V3)和深度思考(R1),建议收藏!!

前言

DeepSeek提供了提供了基础模型(V3)和深度思考(R1)两种不同模式,以满足用户在不同场景下的需求。

基础模型(V3)是通用模型,适用于绝大多数“规范性”任务,如用于快速获取百科信息;而深度思考(R1)是推理模型,擅长解决复杂推理和深度分析等“开放性”任务,如数理逻辑推理和辅助编程。

V3还是R1?过程驱动(规范约束)还是结果驱动(模糊目标)。

DeepSeek-V3 vs DeepSeek-R1: Detailed Comparison

一、基础模型(V3)

基础模型DeepSeek-V3最大亮点是什么?DeepSeek-V3的训练成本远低于其它大模型。

据官方技术论文披露,DeepSeek-V3在预训练阶段仅使用2048块GPU训练了2个月,花费557.6万美元,而GPT-4o的训练成本估计高达数亿美元,马斯克的Grok3更是动用了20万块H100集群。

图片

DeepSeek-V3如何实现低成本高性能?DeepSeek-V3之所以能实现低成本高性能,主要得益于其通过引入Mixture-of-Experts(MoE)架构和多头潜在注意力机制(MLA)进行模型架构创新,同时采用FP8混合精度训练进行训练方法创新。

  1. Mixture-of-Experts(MoE)架构: 由1个共享专家和256个路由专家组成,每个令牌会激活8个路由专家。 这种细粒度的划分提高了模型的表达能力,同时减少了专家之间的通信开销。

  2. 多头潜在注意力机制(MLA):MLA通过对注意力键值(Key-Value)进行低秩压缩,将注意力键值压缩为一个低维的潜在向量,并在推理过程中仅缓存该向量,这种方式大大节省了存储空间,同时保证了信息的完整性。

  3. FP8混合精度训练:DeepSeek-V3首次在如此大规模的模型上成功实现了FP8训练。DeepSeek-V3在大多数计算密集型操作(如矩阵乘法)中使用FP8格式,而在一些对精度敏感的操作(如嵌入模块、输出头、MoE门控模块等)中仍保留较高精度(如BF16或FP32)。这种混合精度框架在保证训练稳定性的同时,显著提高了计算速度和内存效率。

DeepSeek-V3 Explained: Optimizing Efficiency and Scale

二、深度思考(R1)

深度思考DeepSeek-R1最大亮点是什么?DeepSeek-R1在推理能力方面表现出色,尤其在数学、代码和自然语言推理等复杂任务上。

由于DeepSeek-R1具有强大的推理能力和低成本优势,它在多个领域具有广泛的应用前景。例如,在教育领域,它可以作为智能辅导工具,帮助学生解决数学问题、编写代码等;在科研领域,它可以作为研究助手,帮助研究人员处理数据、生成假设等。

DeepSeek R1 vs OpenAI o1: Which One is Better?

DeepSeek-R1如何实现强大的推理能力?DeepSeek-R1通过创新的强化学习技术、多阶段训练管道以及知识蒸馏技术实现了强大的推理能力。

一、强化学习为核心

DeepSeek-R1及其前身DeepSeek-R1-Zero代表了对传统监督微调(SFT)范式的背离,探索了强化学习(RL)的力量。

  1. DeepSeek-R1-Zero:DeepSeek-R1-Zero完全通过强化学习进行训练,没有任何监督微调的介入。在训练过程中,DeepSeek-R1-Zero展示了自我进化的能力,例如通过分配更多的思考时间来重新思考其最初的方法,实现了推理能力的显著提升。然而,这种方法也存在可读性差和语言混合的问题。
  2. DeepSeek-R1:DeepSeek-R1在强化学习之前结合了多阶段训练和冷启动数据方法。具体来说,它引入了数千条高质量的、包含长推理链(Chain of Thought,CoT)的冷启动数据对模型进行微调,从而显著提升了模型的可读性和多语言处理能力。

DeepSeek-R1: Affordable, Efficient, and State-of-the-Art AI Reasoning | by  LM Po | Jan, 2025 | Medium

二、多阶段训练管道

DeepSeek-R1的多阶段训练管道包括冷启动数据预训练、推理导向强化学习、拒绝采样和监督微调以及全场景强化学习等阶段,每个阶段都对模型的推理能力进行了针对性的提升。

图片

三、知识蒸馏技术

**DeepSeek团队还深入探索了将R1的推理能力蒸馏到更小模型中的潜力。****他们利用DeepSeek-R1生成的800K数据对Qwen和Llama系列的多个小模型进行了微调,并发布了DeepSeek-R1-Distill系列模型。**这些小型模型在保持强大推理性能的同时,显著降低了计算资源需求,为企业级应用提供了更实用的解决方案。

How I Run Distill Deepseek Model Locally | by Johanes Mistrialdo | Jan,  2025 | Medium

最后的最后

感谢你们的阅读和喜欢,作为一位在一线互联网行业奋斗多年的老兵,我深知在这个瞬息万变的技术领域中,持续学习和进步的重要性。

为了帮助更多热爱技术、渴望成长的朋友,我特别整理了一份涵盖大模型领域的宝贵资料集。

这些资料不仅是我多年积累的心血结晶,也是我在行业一线实战经验的总结。

这些学习资料不仅深入浅出,而且非常实用,让大家系统而高效地掌握AI大模型的各个知识点。如果你愿意花时间沉下心来学习,相信它们一定能为你提供实质性的帮助。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

大模型知识脑图

为了成为更好的 AI大模型 开发者,这里为大家提供了总的路线图。它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。
在这里插入图片描述

经典书籍阅读

阅读AI大模型经典书籍可以帮助读者提高技术水平,开拓视野,掌握核心技术,提高解决问题的能力,同时也可以借鉴他人的经验。对于想要深入学习AI大模型开发的读者来说,阅读经典书籍是非常有必要的。

在这里插入图片描述

实战案例

光学理论是没用的,要学会跟着一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下

在这里插入图片描述

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值