P3647 [APIO2014]连珠线 换根DP

题意:

传送门

分析:

我们通过分析+手动模拟能够发现,蓝线的形态只有两种: s o n [ u ] [ 1 ] − u − s o n [ u ] [ 2 ] son[u][1]-u-son[u][2] son[u][1]uson[u][2] s o n [ u ] − u − f a [ u ] son[u]-u-fa[u] son[u]ufa[u]对于每一个节点,要么是一个蓝线的中点,要么就是蓝线的端点,所以我们设 f [ u ] [ 0 ] f[u][0] f[u][0]表示 u u u为蓝线端点时的答案, f [ u ] [ 1 ] f[u][1] f[u][1]表示 u u u作为中点时的答案

转移方程如下:

  1. f [ u ] [ 0 ] = m a x ( f [ v ] [ 0 ] , f [ v ] [ 1 ] + w i ) f[u][0]=max(f[v][0],f[v][1]+w_i) f[u][0]=max(f[v][0],f[v][1]+wi)表示 u u u v v v之间连红线和连蓝线两种情况
  2. f [ u ] [ 1 ] = f [ u ] [ 0 ] + m a x ( f [ v ] [ 0 ] + w i − m a x ( f [ v ] [ 0 ] , f [ v ] [ 1 ] + w i ) ) f[u][1]=f[u][0]+max(f[v][0]+w_i-max(f[v][0],f[v][1]+w_i)) f[u][1]=f[u][0]+max(f[v][0]+wimax(f[v][0],f[v][1]+wi))表示在 f [ u ] [ 0 ] f[u][0] f[u][0]的情况下再选择一个儿子连蓝线

然后我们要通过换根来统计不同情况下的答案,那么我们考虑换根时可能造成的影响,首先一个点的儿子变成父亲后,对自己的贡献消失了,也就是说转移时的最大值可能没有了,所以我们要记录次大值,然后这个点还要对自己的儿子产生新的贡献,所以我们记 d p [ u ] [ 1 / 0 ] [ i ] dp[u][1/0][i] dp[u][1/0][i]表示在 f [ u ] [ 1 / 0 ] f[u][1/0] f[u][1/0]的情况下不考虑第 i i i个儿子的答案,换根时要先处理出父亲的正确贡献后才能递归到儿子

代码:

#include<bits/stdc++.h>
#define p(x)  f[x][0]+e[i].val-max(f[x][0],f[x][1]+len[x])
using namespace std;

namespace zzc
{
	const int maxn = 2e5+5;
	int fa[maxn],head[maxn],len[maxn],f[maxn][2];
	int n,cnt=0,ans=0; 
	vector<int> son[maxn],dp[maxn][2],mx[maxn];

	struct edge
	{
		int to,nxt,val;
	}e[maxn<<1];
	
	void add(int u,int v,int w)
	{
		e[++cnt].to=v;
		e[cnt].val=w;
		e[cnt].nxt=head[u];
		head[u]=cnt;
	}
	
	void dfs(int u,int ff)
	{
		f[u][0]=0;
		f[u][1]=-0x3f3f3f;
		int mx1=-0x3f3f3f,mx2=-0x3f3f3f;
		for(int i=head[u];i;i=e[i].nxt)
		{
			int v=e[i].to;
			if(v==ff) continue;
			fa[v]=u;
			son[u].push_back(v);
			len[v]=e[i].val;
			dfs(v,u);
			f[u][0]+=max(f[v][0],f[v][1]+e[i].val);
			if(p(v)>=mx1) mx2=mx1,mx1=p(v);
			else if(p(v)>mx2) mx2=p(v);
		}
		f[u][1]=f[u][0]+mx1;
		for(int i=head[u];i;i=e[i].nxt)
		{
			int v=e[i].to;
			if(v==ff) continue;
			dp[u][0].push_back(f[u][0]-max(f[v][0],f[v][1]+len[v]));
			if(p(v)==mx1)
			{
				dp[u][1].push_back(dp[u][0].back()+mx2);
				mx[u].push_back(mx2);
			}
			else
			{
				dp[u][1].push_back(dp[u][0].back()+mx1);
				mx[u].push_back(mx1);
			}
		}
	}
	
	void solve(int u)
	{
		for(int i=0;i<son[u].size();i++)
		{
			f[u][0]=dp[u][0][i];f[u][1]=dp[u][1][i];
			if(fa[u])
			{
				f[u][0]+=max(f[fa[u]][0],f[fa[u]][1]+len[u]);
				f[u][1]=f[u][0]+max(mx[u][i],f[fa[u]][0]+len[u]-max(f[fa[u]][0],f[fa[u]][1]+len[u]));
			}
			ans=max(ans,f[son[u][i]][0]+max(f[u][0],f[u][1]+len[son[u][i]]));
			solve(son[u][i]);
		}
	}
	
	void work()
	{
		int a,b,c;
		scanf("%d",&n);
		for(int i=1;i<n;i++)
		{
			scanf("%d%d%d",&a,&b,&c);
			add(a,b,c);add(b,a,c);
		}
		dfs(1,0);
		solve(1);
		printf("%d\n",ans);
	}

}

int main()
{
	zzc::work();
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值