x=x+1,x+=1,x++三个式子的效率谁最高

x=x+1:在执行过程中先取等号右边x的地址,计算x+1,然后取等号左边x的地址,最后将等号右边的值传给等号左边。

x+=1:执行过程中先取等号左边x的地址,然后计算x+1,最后将得到的值给x,因为之前等号左边x的地址已经读出来了,所以这里就少了一次读取地址的操作,效率高于x=x+1

x++:先读取x的地址,然后对x自增1,效率是三个里面最高的

在C语言中,要计算多项式P(x)=1+x+2x²+…+7x^7在x=1的值,可以使用以下三种方法: 1. 计算一项累加一项: 这种方法是从第一项开始,逐项计算多项式的值,然后将每一项的结果累加起来。这种方法简单直观,但效率不是最高,尤其是当多项式的次数非常高时。 ```c #include <stdio.h> double polynomial_one_by_one(int x, int terms) { double result = 0.0; for (int i = 0; i < terms; i++) { result += (i + 1) * pow(x, i); // 系数为i+1,x的i次幂 } return result; } int main() { int x = 1; int terms = 7; double result = polynomial_one_by_one(x, terms); printf("多项式的值为: %f\n", result); return 0; } ``` 2. 高乘幂继承低乘幂: 这种方法从最高次幂开始计算,每次计算新的项时,都利用上一次计算的结果,这样可以减少重复计算。对于本题中的多项式,可以用这种方法来提高效率。 ```c #include <stdio.h> double polynomial_high_power_low_power(int x, int terms) { double result = 0.0; double base = 1.0; // 0次幂为1 for (int i = 0; i <= terms; i++) { result += (i + 1) * base; // 系数为i+1,使用上一次的base值 base *= x; // 继承低乘幂 } return result; } int main() { int x = 1; int terms = 7; double result = polynomial_high_power_low_power(x, terms); printf("多项式的值为: %f\n", result); return 0; } ``` 3. 秦九韵算法: 秦九韵算法是一种更高效的多项式求值方法,使用了多项式求值的最优形式。这种方法不是简单的递增或递减,而是在每个步骤中都进行最优的选择,以减少乘法的次数。 对于本题的多项式,秦九韵算法的直接应用比较复杂,因为它通常用于多项式的快速求值问题,如霍纳法则(Horner's Rule),但秦九韵算法的原理可以帮助我们更好地理解如何优化多项式求值的计算过程。 使用霍纳法则,也就是秦九韵算法的简化版本,对于本题多项式可以如下实现: ```c #include <stdio.h> double polynomial_horner(int x, int terms) { double result = 1.0; // 从x^0开始 for (int i = 1; i <= terms; i++) { result = result * x + i; // 逐步计算多项式的值 } return result; } int main() { int x = 1; int terms = 7; double result = polynomial_horner(x, terms); printf("多项式的值为: %f\n", result); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值