BZOJ 5102: [POI2018]Prawnicy

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/ypxrain/article/details/79957151

Description

定义一个区间(l,r)的长度为r-l,空区间的长度为0。
给定数轴上n个区间,请选择其中恰好k个区间,使得交集的长度最大。

Input

第一行包含两个正整数n,k(1<=k<=n<=1000000),表示区间的数量。
接下来n行,每行两个正整数l,r(1<=l

Output

第一行输出一个整数,即最大长度。
第二行输出k个正整数,依次表示选择的是输入文件中的第几个区间。
若有多组最优解,输出任意一组。

Sample Input

6 3

3 8

4 12

2 6

1 10

5 9

11 12

Sample Output

4

1 2 4

分析

枚举左端点,那么最优的右端点显然是把所有左端点不大于该点的区间加入,然后取第k大的右端点。
那么我们只要把区间按照左端点排序,然后用一个堆来维护即可。

代码

#include <bits/stdc++.h>

const int N = 1000005;

struct Data
{
    int l,r,id;
}a[N];

bool cmp(Data a,Data b)
{
    return a.l < b.l;
}


std::priority_queue<int> Q;

int read()
{
    int x = 0, f = 1;
    char ch = getchar();
    while (ch < '0' || ch > '9') {if (ch == '-') f = -1; ch = getchar();}
    while (ch >= '0' && ch <= '9') {x = x * 10 + ch - '0'; ch = getchar();}
    return x * f;
}

int main()
{
    int n = read(), m = read();
    for (int i = 1; i <= n; i++)
    {
        a[i].l = read(), a[i].r = read(), a[i].id = i;
    }
    std::sort(a + 1, a + n + 1, cmp);
    int ans = 0, x, y;
    for (int i = 1; i <= n; i++)
    {
        Q.push(-a[i].r);
        if (Q.size() > m)
            Q.pop();
        if (Q.size() == m && -Q.top() - a[i].l > ans)
            ans = -Q.top() - a[i].l, x = a[i].l, y = -Q.top();
    }
    printf("%d\n",ans);
    for (int i = 1; i <= n; i++)
        if (a[i].l <= x && a[i].r >= y)
        {
            printf("%d ", a[i].id);
            m--;
            if (!m)
                break;
        }
}
阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页