神经网络 专项1 FN--全连接网络(0806)

本文深入探讨了全连接网络(FN)的理论原理,详细阐述了激活函数的选择及其作用,特别是Sigmoid函数在引入非线性和数据归一化中的角色。此外,还介绍了前向传播和反向传播的步骤,包括如何计算损失函数并调整权重以优化网络性能。整个过程以确保从输入到输出的正确信息传递,并逐步优化网络参数。
摘要由CSDN通过智能技术生成

FN–全连接网络

1.理论原理

定义:对n-1层和n层而言,n-1层的任意一个节点,都和第n层所有节点有连接。即第n层的每个节点在进行计算的时候,激活函数的输入是n-1层所有节点的加权
在这里插入图片描述
引用自_寒潭雁影
显然,计算公式为:Z1=W11X1+W12X2+K1;Y=1/(1+e的-z次幂)(其他节点类推)
选用激活函数1/(1+e的-x次幂)
利用Sigmoid进行激活(类似于复合函数的过程)
步骤
a.前向传播
将每个节点的表达式排列出来
对所有的X、K、W带入实际数值,推导Z(1)和Y,再推O
Y和O,是Z代入激活函数的结果
经过计算得出 Z(1)、Y、Z(2)、O
#利用激活函数完成两个目标:数据归一化、引入非线性
#偏置项,解除线性、非线性
b.反向传播
根据上个步骤的输入、输出,以及期望输出调整参数W
引入损失函数,计算当前损失
求损失函数在W上的偏导数(链式法则),带入前向时求出的值,得到准确值
Wnew=W-学习率×损失函数在该方向上的偏导数(具体值)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值