题目描述
由数字 0 组成的方阵中,有一任意形状的由数字 1 构成的闭合圈。现要求把闭合圈内的所有空间都填写成 2。例如:6×6 的方阵(n=6),涂色前和涂色后的方阵如下:
如果从某个 0 出发,只向上下左右 4 个方向移动且仅经过其他 0 的情况下,无法到达方阵的边界,就认为这个 0 在闭合圈内。闭合圈不一定是环形的,可以是任意形状,但保证闭合圈内的 0 是连通的(两两之间可以相互到达)。
0 0 0 0 0 0
0 0 0 1 1 1
0 1 1 0 0 1
1 1 0 0 0 1
1 0 0 1 0 1
1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 1 1 1
0 1 1 2 2 1
1 1 2 2 2 1
1 2 2 1 2 1
1 1 1 1 1 1
输入格式
每组测试数据第一行一个整数 n(1≤n≤30)。
接下来 n 行,由 0 和 1 组成的 n×n 的方阵。
方阵内只有一个闭合圈,圈内至少有一个 0。
输出格式
已经填好数字 2 的完整方阵。
输入输出样例
输入 #1
6 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1
输出 #1
0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 2 2 1 1 1 2 2 2 1 1 2 2 2 2 1 1 1 1 1 1 1
说明/提示
对于 100% 的数据,1≤n≤30。
思路
这道题用BFS和DFS都可以。
完整代码
DFS:
#include<bits/stdc++.h>
using namespace std;
int a[100][100],b[100][100]={0};
int n,x,y,flag=0;
void dfs(int x,int y){
if(x>n||x<1||y>n||y<1||a[x][y]!=0)return;
a[x][y]=1;
dfs(x+1,y);
dfs(x-1,y);
dfs(x,y+1);
dfs(x,y-1);
}
int main(){
cin>>n;
//freopen("a.in","r",stdin);
//freopen("b.out","w",stdout);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
cin>>a[i][j];
if(a[i][j]==1) b[i][j]=-1;
}
}
for(int i=1;i<=n;i++){
if(a[i][1]!=1) dfs(i,1);
if(a[i][n]!=1) dfs(i,n);
}
for(int i=1;i<=n;i++){
if(a[1][i]!=1) dfs(1,i);
if(a[n][i]!=1) dfs(n,i);
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(b[i][j]==-1) cout<<"1 ";
else
if(a[i][j]==0) cout<<"2 ";
else cout<<"0 ";
}
cout<<endl;
}
return 0;
}
BFS:
#include<iostream>
#include<ctime>
#include<cstdio>
using namespace std;
int num[40][40],c;
int k;
int main()
{
int i,j,k,l;
cin>>c;
for(i=1;i<=c;i++)for(j=1;j<=c;j++)
{
scanf("%d",&num[i][j]);
if(num[i][j]==0)num[i][j]=2;
}
for(i=1;i<=39;i++)
{num[0][i]=9;num[i][0]=9;
for(i=1;i<=c;i++)
{
if(num[1][i]==2){num[1][i]=0;}
if(num[i][1]==2)num[i][1]=0;
if(num[c][i]==2)num[c][i]=0;
if(num[i][c]==2)num[i][c]=0;
}
for(k=1;k<=100;k++)
for(i=1;i<=c;i++)
for(j=1;j<=c;j++)
{
if(num[i][j]!=1)
if(num[i][j-1]==0||num[i-1][j]==0||num[i+1][j]==0||num[i][j+1]==0)
num[i][j]=0;
}
for(i=1;i<=c;i++)
{
for(j=1;j<=c;j++)
printf("%d ",num[i][j]);
cout<<endl;
}
return 0;
}