聚类算法习题

该博客讨论了数据挖掘中使用K-平均算法进行聚类的问题。具体来说,任务是将8个二维坐标点聚类成3个簇,初始中心点为A1, B1, C1。通过迭代计算,得出每次循环后的聚类中心和最终的三个簇分布。" 138042308,11367766,Linux Media Infrastructure API详解:V4L2与多媒体设备控制,"['linux', 'v4l2', '媒体设备', '驱动开发']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

假设数据挖掘的任务是将8个点聚类成3个簇,

A1(2,10),A2(2,5),A3(8,4),B1(5,8),B2(7,5),B3(6,4),C1(1,2),C3(4,9),距离函数是欧几里得距离。假设初始选择A1,B1,C1分别作为每个聚类的中心,用k—平均算法来给出:

1.第一次循环执行后的三个聚类中心;

2.最后的三个簇。

答:

1.第一次循环执行后的三个聚类中心:

选取的三个点位A1(2,10),B1(5,8),C1(1,2),计算距离如下:

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蹦跶的小羊羔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值