zoj Candies 贪心

根据题目可知3K位置的数量是可以直接确定的,并且n-2-3*k的也可以确定。所以只要这两部分不重合,答案就是确定的,或者有额外的位置是原来就已知,也是确定的。答案不确定的情况下,容易知道,有%3==1位置是同时取到最大值的,mod3==2也是同时取到最大值的。所以可以分别求出这两部分的最大值,然后O(1)回答。

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn=1e5+9,inf=1e9;
int a[maxn],sum[maxn];
int max1[maxn],max2[maxn];
int main()
{
//    freopen("in.txt","r",stdin);
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        a[n+1]=a[0]=0;
        for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
        for(int i=1;i<=n;i++)
        scanf("%d",&sum[i]);

        for(int i=3;i<=n;i+=3)
        a[i]=sum[i-1]-(sum[i-2]-a[i-3]);

        for(int i=n-2;i>=1;i-=3)
        a[i]=sum[i+1]-(sum[i+2]-a[i+3]);

        for(int i=1;i+2<=n;i++)
        {
            int tmp=0,txt,ss=0;
            for(int j=0;j<=2;j++)
            if(a[i+j]==-1) tmp++,txt=i+j;
            else ss+=a[i+j];
            if(tmp==1)
            a[txt]=sum[i+1]-ss;
        }

        for(int i=n-2;i>=1;i--)
        {
            int tmp=0,txt,ss=0;
            for(int j=0;j<=2;j++)
            if(a[i+j]==-1) tmp++,txt=i+j;
            else ss+=a[i+j];
            if(tmp==1)
            a[txt]=sum[i+1]-ss;
        }

        bool flag=true;
        for(int i=1;i<=n;i++)
        if(a[i]==-1) flag=false;

        if(flag)
        {
            int m;
            scanf("%d",&m);
            for(int i=1,tmp;i<=m;i++)
            {
                scanf("%d",&tmp);
                printf("%d\n",a[tmp+1]);
            }
        }
        else
        {
            for(int i=1;i<=n;i++)
            if(a[i]!=-1)
            max1[i]=max2[i]=a[i];
            else
            max1[i]=max2[i]=-inf;

            int min1=inf,min2=inf;
            max1[1]=100000;
            for(int i=1;i+2<=n;i++)
            {
                int tmp=0,txt,ss=0;
                for(int j=0;j<=2;j++)
                if(max1[i+j]==-inf) tmp++,txt=i+j;
                else ss+=max1[i+j];
                if(tmp==1)
                {
                    max1[txt]=sum[i+1]-ss;
                    min1=min(min1,max1[txt]);
                }
            }

            max2[2]=100000;
            for(int i=1;i+2<=n;i++)
            {
                int tmp=0,txt,ss=0;
                for(int j=0;j<=2;j++)
                if(max2[i+j]==-inf) tmp++,txt=i+j;
                else ss+=max2[i+j];
                if(tmp==1)
                {
                    max2[txt]=sum[i+1]-ss;
                    min2=min(min2,max2[txt]);
                }
            }

            int m;
            scanf("%d",&m);
            for(int i=1,tmp;i<=m;i++)
            {
                scanf("%d",&tmp);
                tmp++;
                if(tmp%3==0)
                printf("%d\n",a[tmp]);
                else if(tmp%3==1)
                printf("%d\n",max1[tmp]+min1);
                else
                printf("%d\n",max2[tmp]+min2);
            }
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值