SparkSQL的CSV数据源和Parquet数据源

1.CSV数据源

package cn.ysjh0014.SparkSql

import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object SparkSqlCsv {

  def main(args: Array[String]): Unit = {

    val session: SparkSession = SparkSession.builder().appName("JsonSource").master("local[4]").getOrCreate()

    import session.implicits._

    //读取csv类型的数据
    val csv: DataFrame = session.read.csv("D:\\测试数据\\test2\\part-00000-f967e149-5ac3-4f9b-ba2a-16f22c6c3496.csv")

    csv.show()

    session.stop()

  }
}

运行结果:

可以看出CSV类型的文件只能读出有几列,并不能读出每列的列名信息,只能默认用_c0等代替,并且每列的数据类型也只能用识别为String

2.Parquet数据源(更加智能,可以提高程序的执行效率)

package cn.ysjh0014.SparkSql

import org.apache.spark.sql.{DataFrame, Dataset, Row, SparkSession}

object SparkSqlCsv {

  def main(args: Array[String]): Unit = {

    val session: SparkSession = SparkSession.builder().appName("JsonSource").master("local[4]").getOrCreate()

    import session.implicits._

    //读取csv类型的数据
    val parquet: DataFrame = session.read.parquet("D:\\测试数据\\test3\\part-00000-d1028b5e-9ca5-41ba-b221-ffc982712763.snappy.parquet")

//    val parquet: DataFrame = session.read.format("parquet").load("D:\\测试数据\\test3\\part-00000-d1028b5e-9ca5-41ba-b221-ffc982712763.snappy.parquet")
//    parquet.printSchema()
    parquet.show()

    session.stop()

  }
}

Parquet文件在文件中直接打开你会发现全是数字,不是你原来保存的内容,这是他独特的保存方式,既保存了数据,又保存了Schema信息,保存了有哪些列,列的类型,偏移量信息,将相同的列的数据保存到l一起

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值