loss训练时的不下降、nan或者为0

1、loss不下降:

https://blog.csdn.net/qq_19329785/article/details/84260201

https://blog.csdn.net/zongza/article/details/89185852

https://blog.csdn.net/liuweiyuxiang/article/details/80856991

2、检测中faster-rcnn的loss是nan:大部分是坐标越界造成的;

https://blog.csdn.net/qq_14839543/article/details/72900863

3、检测中faster-rcnn的bbox_loss为0,主要是因为fg太少,遇到过第一阶段的rois中,假设batch_size是128,得到fg/bg=1/127,很可能bbox_loss等于0,因为rois中fg就是1,在第二阶段计算bbox_loss时只计算正样本,而正样本就1个,因此loss很小,为0;

https://blog.csdn.net/u011070171/article/details/70256611

https://blog.csdn.net/KevinLee200204/article/details/79041586

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值