TensorFlow遇到的各种错误

目录

安装tensorflow-gpu 2.12.0报错

Could not load dynamic library ‘cudart64_110.dll‘; dlerror: cudart64_110.dll

在使用cuda12 报错Library cublas64_11.dll is not found

版本问题

ImportError: cannot import name 'set_random_seed' from 'tensorflow' 

module ‘tensorflow’ has no attribute ‘ConfigProto’/'Session’

`set_session` is not available when using TensorFlow 2.0

OP_REQUIRES failed at save_restore_v2_ops.cc:109 : Not found: Failed to create a NewWriteableFile:


安装tensorflow-gpu 2.12.0报错

原因:从 2022 年 12 月起 tensorflow-gpu 已经合并到 tensorflow 包中了

解决方案:直接装tensorflow,或者装tensorflow-gpu低版本(比如2.10.1)

Could not load dynamic library ‘cudart64_110.dll‘; dlerror: cudart64_110.dll

安装cuda对应版本,然后去cuda文件夹下复制文件到system32

其他dll报错类似处理

在使用cuda12 报错Library cublas64_11.dll is not found

去CUDA的安装路径下的bin目录你会看到新版本的cublas64_12.dll复制一个,名字改成cublas64_11.dll

其他dll报错类似处理

版本问题

很多报错都是因为版本问题,TensorFlow的版本、CUDA的版本等等。比如以下的例子:

ImportError: Could not find 'cudart64_100.dll'

需要下载对应CUDA版本。

或者去网上下载cudart64_100.dll,拷贝到

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\10.1\Development\bin目录下

ImportError: cannot import name 'set_random_seed' from 'tensorflow' 

TensorFlow-GPU2.0中遇到这个问题

2.0中的新写法:

import tensorflow
tensorflow.random.set_seed(x)

module ‘tensorflow’ has no attribute ‘ConfigProto’/'Session’

tensorflow2.0版本与之前版本有所更新,故将上述代码改成之下即可:

    #原版 config = tf.ConfigProto(allow_soft_placement=True)
    config = tf.compat.v1.ConfigProto(allow_soft_placement=True)
    #原版 sess = tf.Session(config=config)
    sess =tf.compat.v1.Session(config=config)  #注意 ,这里为tensorflow2.0版本,与第1.0有差距。

`set_session` is not available when using TensorFlow 2.0

若是遇到如题错误,则将

keras.backend.tensorflow_backend.set_session(tf.compat.v1.Session(config=config))

改为

tf.compat.v1.keras.backend.set_session(tf.compat.v1.Session(config=config))

OP_REQUIRES failed at save_restore_v2_ops.cc:109 : Not found: Failed to create a NewWriteableFile:

路径写法问题,错误写法

root_path = "../results/"

正确写法

root_path = "..\\results\\"

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值