Dify+MCP 组合拳:彻底根治 Excel 上传知识库回答数据不准的难题!

一、基本流程

我们通过在自然语言与AI交互,

null

二、安装MySql

本步骤安装Mysql,如果电脑已经安装有Mysql或者服务器部署有Mysql

1、下载

由于Mysql的下载安装比较繁琐,按照我的风格,我又把他做成了一键安装包,只需点击安装即可自动安装

2、安装

解压下载好的一键安装包后,安装步骤:

① 双击根目录内的 MySql管理工具.exe

② 点击安装 按钮即可等待安装完成

③ 复制mysql账号密码

④ 在navicat内填写好账号密码(公众号内回复 navicat 获下载连接)

⑤ 点击左侧测试连接

出现成功确认框,表示成功安装了MySql,接下来即可开始后面的操作了

null

三、把数据导入MySql

1、创建数据库

img

2、导入数据表

注意:导入sql文件测试数据,在下载mysql的网盘内获取

null

null

四、安装并启动MCP服务

1、初始化源码项目为uv项目

输出指令:

# 初始化uv init

null

2、创建虚拟环境

# 创建虚拟环境uv venv

null

3、激活虚拟环境

.venv\Scripts\activate

null

4、安装项目依赖

uv pip install -r .\requirements.txt        

null

5、数据库配置

在项目的env 文件内配置前面获取到的mysql账户密码及地址

null

6、运行server

本项目会开启一个 SSE 通信方式的MCP服务,方便AI通过url远程调用本服务

uv run -m src.server

可以看到,MCP服务运行在了 3000 端口,请记住该端口号,后面配置Dify工作流会用到

null

五、Dify工作流调用MCP服务

1、安装插件

安装 MCP Agent策略 MCP SSE 插件,以供后面使用

null

2、创建对话工作流应用

null

3、开始节点

开始节点什么都不用填写,默认使用输入框的内容 sys.query 作为输入参数

null

4、Agent策略节点

1、选择策略工具

选择刚才下载的 MCP Agent 策略作为意图识别的工具,他会自主来决策,该选择调用工具列表中的哪个工具执行任务

null

2、选择AI模型

null

3、添加工具

① 点击添加工具

② 选择前面安装的插件工具

获取MCP工具列表,调用MCP工具,两个都要选择,此处仅以第一个为例,第二个操作步骤一样

③ 点击工具授权

④ 填写MCP的SSE服务配置

此处填写的信息就用到了前面启动MCP服务时我提到的端口号 3000

{  "mysql-server": {    "url": "http://host.docker.internal:3000/sse",    "headers": {}, "timeout": 60,    "sse_read_timeout": 300  }}

null

4、启用工具

null

5、选择另一个工具

null

6、填写指令提示词
你是一名水果店员工,负责调用工具列表,查询水果表数据,水果表表结构如下:CREATE TABLE `fruits` (
  `id` int NOT NULL COMMENT 'ID',
  `name` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '水果名称',
  `price` decimal(6,2) NOT NULL COMMENT '水果价格',
  `stock` int NOT NULL COMMENT '库存',
  `origin` varchar(20) CHARACTER SET utf8mb4 COLLATE utf8mb4_general_ci NOT NULL COMMENT '产地',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci COMMENT='水果表';

null

7、设置查询提示词

聊天输入框的值就是 sys.query

null

5、直接回复节点

null

6、测试效果

1、dify的返回结果

null

2、可以看到MCP服务控制台的打印信息

null

3、工作流的日志追踪

null

7、保存工作流

null

总结

MCP结合数据库的方案为Dify等知识库应用提供了高效、精准的结构化数据检索能力,显著提升了数据查询的准确性和灵活性,弥补了RAG的检索精度上的不足。

但是,这一方案也是有缺点的,与RAG每次只检索相关文本片段不同,MCP+数据库会真正执行SQL查询,若一次查询数据量过大,会消耗大量Token,甚至可能导致MCP客户端卡死。

在实际应用中,我们应该将两种技术结合使用,取长补短,灵活处理自己的业务场景。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值