大模型谁家强:Gemini、Claude、GPT-4o 和 O1

近年来,大型语言模型 (LLM) 发展迅速。在中国,注册在册的大模型就有200家左右。国外的核心大模型,如 Google 的 Gemini、Anthropic 的 Claude、OpenAI 的 GPT-4o 和 O1。这些模型在功能和性能上各有千秋。那么这些大模型从模型规模、训练数据、性能表现、安全性等方面有什么区别?各自有什么特点及场景适用性,未来发展趋势。

1. 模型规模和参数量

模型规模和参数量是衡量 LLM 复杂程度和能力的重要指标。一般来说,规模越大、参数越多,模型的学习能力和表达能力就越强,但也意味着更高的计算成本和训练难度。遗憾的是,目前 Google Gemini、Anthropic Claude、OpenAI GPT-4o 和 O1 的具体模型规模和参数量并未公开披露。

Google Gemini 有 Ultra、Pro 和 Nano 三种尺寸,每种尺寸都专门针对不同的计算限制和应用需求量身定制。OpenAI 的 GPT-4o 参数量超过 1750 亿,而 GPT-4o mini 的规模与 Llama 8b 相当。OpenAI O1 和 O1-mini 的上下文窗口均为 128k tokens。

2. 训练数据和方法

训练数据和方法对 LLM 的性能表现至关重要。高质量、多样化的训练数据可以提升模型的泛化能力和知识储备,而高效的训练方法则可以加速模型的学习过程和优化模型性能。

Google Gemini 1.0 使用 Google 的 Tensor Processing Units (TPUs) v4 和 v5e 进行训练,并针对 Google AI 进行了优化,使其成为 Google 最可靠、最具扩展性、训练效率最高、服务效率最高的模型。Gemini 在 TPU 上的运行速度明显快于早期规模较小、功能较弱的模型。这些定制设计的 AI 加速器一直是 Google 为数十亿用户提供服务的 AI 产品的核心,例如搜索、YouTube、Gmail、Google 地图、Google Play 和 Android。

Anthropic Claude 是新一代 AI 助手,它基于 Anthropic 对训练有益、诚实和无害 AI 系统的研究。它可以通过开发者控制台中的聊天界面和 API 访问,能够处理各种对话和文本处理任务,同时保持高度的可靠性和可预测性。

OpenAI GPT-4o 支持 API 中的文本和视觉功能,未来将支持文本、图像、视频和音频输入和输出。该模型的上下文窗口为 128k tokens,每个请求最多支持 16k 输出 tokens,其知识储备更新至 2023 年 10 月。

OpenAI O1 模型系列使用大规模强化学习进行训练,并使用思维链进行推理。通过训练,模型学会改进其思维过程、尝试不同的策略并识别错误。

3. 性能表现

3.1 文本生成质量

LLM 的文本生成质量体现在生成文本的流畅性、准确性、逻辑性和创造性等方面。

Google Gemini: Gemini Ultra 在 32 个广泛使用的大型语言模型 (LLM) 研发学术基准测试中有 30 个超过了当前最先进的结果。Gemini Ultra 得分为 90.0%,是第一个在 MMLU(大规模多任务语言理解)方面超越人类专家的模型,该模型结合了 57 个科目(如数学、物理、历史、法律、医学和伦理学)来测试世界知识和解决问题的能力。

OpenAI GPT-4o: GPT-4o 在文本、推理和编码智能方面达到了 GPT-4 Turbo 级别的性能,同时在多语言、音频和视觉能力方面树立了新的标杆。

3.2 逻辑推理能力

逻辑推理能力是 LLM 解决复杂问题、进行深度思考的关键能力。

Google Gemini: Gemini Ultra 在新的 MMMU 基准测试中取得了 59.4% 的最高分,该基准测试由跨越不同领域的多模态任务组成,需要进行深思熟虑的推理。

Anthropic Claude: Claude 能够执行复杂的认知任务,这些任务超越了简单的模式识别或文本生成。

OpenAI GPT-4o: GPT-4o mini 在涉及文本和视觉的推理任务方面优于其他小型模型,在文本智能和推理基准 MMLU 上得分为 82.0%,而 Gemini Flash 为 77.9%,Claude Haiku 为 73.8%。

OpenAI O1: O1 模型系列经过训练,可以使用思维链进行推理。这些先进的推理能力为提高模型的安全性和稳健性提供了新途径。特别是,我们的模型在响应潜在不安全的提示时,可以在上下文中推理我们的安全策略。这使得在某些基准测试中,对于诸如生成非法建议、选择刻板印象的响应以及屈服于已知的越狱等风险,其性能达到了最先进的水平。

3.3 知识储备和理解能力

LLM 的知识储备和理解能力决定了其能否准确地回答问题、生成合理的文本。

Google Gemini: Gemini Ultra 是第一个在 MMLU(大规模多任务语言理解)方面超越人类专家的模型,该模型结合了 57 个科目(如数学、物理、历史、法律、医学和伦理学)来测试世界知识和解决问题的能力。

OpenAI GPT-4o: GPT-4o mini 在数学推理和编码任务方面表现出色,优于市场上之前的小型模型。在衡量数学推理能力的 MGSM 上,GPT-4o mini 得分为 87.0%,而 Gemini Flash 为 75.5%,Claude Haiku 为 71.7%。

3.4 多模态能力

多模态能力是指 LLM 处理多种类型信息(如文本、图像、音频、视频)的能力。

Google Gemini: Gemini 是一种多模态模型,这意味着它可以概括并无缝地理解、操作和组合不同类型的信息,包括文本、代码、音频、图像和视频。在我们测试的图像基准测试中,Gemini Ultra 优于之前最先进的模型,无需光学字符识别 (OCR) 系统的帮助,即可从图像中提取文本以进行进一步处理。这些基准测试突出了 Gemini 的原生多模态性,并表明了 Gemini 更复杂的推理能力的早期迹象。

OpenAI GPT-4o: GPT-4o 是朝着更自然的人机交互迈出的一步,它接受文本、音频、图像和视频的任意组合作为输入,并生成文本、音频和图像输出的任意组合。它可以在 232 毫秒内响应音频输入,平均为 320 毫秒,这与人类在对话中的响应时间相似。

4. 安全性、可解释性和可控性

安全性、可解释性和可控性是 LLM 发展过程中需要重点关注的问题。安全性是指模型避免生成有害、偏见或误导性信息的能力;可解释性是指模型的决策过程和输出结果易于理解和解释;可控性是指用户可以有效地控制模型的生成行为和输出结果。

Google Gemini: Gemini 进行了迄今为止任何 Google AI 模型中最全面的安全评估,包括偏见和毒性评估。我们还对网络攻击、说服和自主性等潜在风险领域进行了新的研究,并应用了 Google Research 一流的对抗性测试技术,以帮助在 Gemini 部署之前识别关键的安全问题。

Anthropic Claude: Anthropic Claude 不太可能产生有害输出,更容易交谈,并且更易于操控。您可以用更少的努力获得所需的输出。Claude 还可以接受关于个性、语气和行为的指导。Claude 应用了宪法人工智能 (CAI) 原则来管理其行为,提高了 AI 模型训练的透明度。

OpenAI GPT-4o: OpenAI 从一开始就教导其 AI 明辨是非,过滤有害内容并以同理心做出回应。OpenAI 进行内部评估并与专家合作测试现实世界的场景,从而增强其保障措施。

OpenAI O1: O1 模型系列经过训练,可以使用思维链进行推理。这些先进的推理能力为提高模型的安全性和稳健性提供了新途径。特别是,我们的模型在响应潜在不安全的提示时,可以在上下文中推理我们的安全策略。这使得在某些基准测试中,对于诸如生成非法建议、选择刻板印象的响应以及屈服于已知的越狱等风险,其性能达到了最先进的水平。

5. 应用场景和商业价值

Google Gemini: Gemini Ultra 是第一个在 MMLU(大规模多任务语言理解)方面超越人类专家的模型,该模型结合了 57 个科目(如数学、物理、历史、法律、医学和伦理学)来测试世界知识和解决问题的能力。从 12 月 13 日开始,开发人员和企业客户可以通过 Google AI Studio 或 Google Cloud Vertex AI 中的 Gemini API 访问 Gemini Pro。Google AI Studio 是一款免费的基于 Web 的开发者工具,可使用 API 密钥快速创建原型和启动应用。当需要一个完全托管的 AI 平台时,Vertex AI 允许使用完整的数据控制自定义 Gemini,并受益于 Google Cloud 的其他功能,以实现企业安全、保障、隐私以及数据治理和合规性。

Anthropic Claude: Claude 是新一代的 AI 助手,基于 Anthropic 对训练有益、诚实和无害的 AI 系统的研究。它的特点是可靠性和可预测性,可用于对话和文本处理。早期采用者表示,Claude 不太可能产生有害结果,更容易沟通,并且更易于操控。

penAI GPT-4o: 最有趣的应用之一是 AI 能够现场演唱摇篮曲或歌曲。父母可以让 GPT-4o 为他们的孩子创作个性化的睡前歌曲,并根据心情调整音调和音量。此外,GPT-4o 比 GPT-4 Turbo 快得多,而且在 API 中便宜 50%。

penAI O1: O1 模型在处理需要逻辑、数学和技术专长的任务时,其性能得到了显着提高。

6. 模型特点和适用场景总结

模型主要特点适用场景
Google Gemini多模态、高性能、可扩展自然语言理解、代码生成、图像分析、辅助创作、智能助手
Anthropic Claude安全可靠、易于操控、低幻觉率对话系统、文本处理、代码生成、知识问答
OpenAI GPT-4o多模态、高性能、支持多种语言文本生成、图像理解、音频处理、代码生成
OpenAI O1强推理能力、解决复杂问题科学研究、数学计算、代码生成、专业服务

7. 未来发展趋势

未来,LLM 的发展趋势将体现在以下几个方面:

规模更大、能力更强: 随着计算能力的提升和训练数据的积累,LLM 的规模将持续扩大,能力也将不断增强,能够处理更复杂的任务和生成更高质量的文本。

  • 多模态融合: LLM 将更加注重多模态信息的融合,能够综合处理文本、图像、音频、视频等多种信息,实现更自然、更智能的人机交互。

  • 安全性提升: LLM 的安全性将得到进一步提升,能够有效避免生成有害、偏见或误导性信息,保障用户的身心健康和社会稳定。

  • 可解释性增强: LLM 的可解释性将得到增强,用户能够更好地理解模型的决策过程和输出结果,增强对模型的信任和控制。

  • 应用场景拓展: LLM 的应用场景将不断拓展,渗透到更多的领域,如教育、医疗、金融、法律等,为人类社会创造更大的价值。


结论

Google Gemini、Anthropic Claude、OpenAI GPT-4o 和 O1 等大型语言模型 (LLM) 各具特色,都在不断发展和完善。

Google Gemini 是一款多模态模型,在处理图像和视频以及将不同类型的信息结合起来方面表现出色。它在 MMLU 基准测试中也优于人类专家,突出了其强大的语言理解能力。Gemini 具有 Ultra、Pro 和 Nano 三种尺寸,每种尺寸都针对不同的计算限制和应用需求量身定制,使其成为开发人员和企业客户的多功能选择。

Anthropic Claude 采用宪法人工智能 (CAI) 原则进行训练,注重安全性和可控性。它不太可能产生有害输出,并且更容易与用户交互。Claude 非常适合对话系统、文本处理和其他需要高度可靠性和可预测性的应用程序。

OpenAI GPT-4o 是另一个多模态模型,支持多种语言,并且在处理音频输入方面速度非常快。它在文本生成、图像理解和音频处理方面表现出色,使其成为各种应用的合适选择。

OpenAI O1 擅长解决复杂问题和进行推理。它在科学研究、数学计算和专业服务等领域具有优势,在这些领域中,逻辑推理和解决问题的能力至关重要。

总而言之,LLM 的选择取决于用户的具体需求和用例。对于需要强大语言理解能力和多模态处理能力的用户,Gemini 是一个不错的选择。对于那些优先考虑安全性和可控性的用户,Claude 可能更合适。GPT-4o 适用于需要快速音频处理和多语言支持的应用,而 O1 则非常适合需要高级推理和解决问题能力的任务。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在大模型的学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《AI大模型入门+进阶学习资源包**》,扫码获取~

篇幅有限,部分资料如下:

👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。

路线图很大就不一一展示了 (文末领取)
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥两本《中国大模型落地应用案例集》 收录了近两年151个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)
在这里插入图片描述

👉GitHub海量高星开源项目👈

💥收集整理了海量的开源项目,地址、代码、文档等等全都下载共享给大家一起学习!
在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)
在这里插入图片描述

👉640份大模型行业报告(持续更新)👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:

这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值