写一个基于大模型的舆情分析和自动评论回复工具(评论区带下载链接)


·

整体架构

本产品是一套自动化对流量渠道进行舆论采集舆论分析和评论生成发布的流程,目前涉及采集的流量渠道主要有小红书及抖音,后续将根据用户需求增加开发其他流量渠道。

  • 分批量和实时两条线。
    • 批量线
      • 1、负责批量采集包括小红书文案内容、抖音视频内容、小红书及抖音评论内容,
      • 2、基于采集到的内容数据,进行舆论分析,包括正负向情感分析、热门观点提取;进而针对热门观点,进行评论内容的生成。
    • 实时线
      • 1、负责实时采集包括小红书文案内容、抖音视频内容、小红书及抖音评论内容,
      • 2、基于采集到的内容数据,实时进行评论内容的生成和发布。

在这里插入图片描述

批量采集及舆论分析

模块一 批量采集

该模块使用的是开源RPA工具tagUI,自主开发完成针对指定搜索关键词进行小红书文案、抖音视频文案以及相关评论的采集。
执行xhsDACQ.py及dyDACQ.py完成数据采集工作,生成相应的csv结果文件。

小红书内容采集

运行xhsDACQ.py脚本,指定以下入参:

入参备注
搜索关键词以|区分不同的关键词,如智己|LS7
筛选条件以|区分排序和类型,排序参数可为空即按照默认排序、最新、最热;类型参数为空即默认全部、图文、视频。
采集内容类型1、note;2、comment;3、note&comment
采集条数上限笔记条数采集上限
每条笔记采集的评论数当采集内容类型=1时,为空

根据用户采集内容类型 ,输出采集的笔记内容和评论内容,具体采集字段如下:

在这里插入图片描述

举例1:python xhsDACQ.py 智己|LS7 最新|图文 1 100——> 将获得以“智己 LS7”为关键词搜索的最新图文笔记100篇对应的文字描述内容
举例2:python xhsDACQ.py 智己|LS7 | 3 100 5——> 将获得以“智己 LS7”为关键词搜索的按照默认排序的前100篇笔记对应的文字描述内容及每篇笔记的前5条评论内容。

抖音内容采集

运行dyDACQ.py脚本时,需指定以下入参:

入参备注
搜索关键词以|区分不同的关键词,如智己|LS7
筛选条件以|区分排序和发布时间,排序参数可为空即按照综合排序、最新、最多点赞;发布时间参数为空即不限、一天内、一周内、半年内。
采集内容类型1、vedio;2、comment;3、vedio&comment
采集条数上限视频条数采集上限
每条视频采集的评论数当采集内容类型=1时,为空

根据用户采集内容类型 ,输出采集的笔记内容和评论内容,具体采集字段如下:

在这里插入图片描述

举例1:python dyDACQ.py 智己|LS7 最新|一天内 1 100——> 将获得以“智己 LS7”为关键词搜索一天内最新100篇视频对应的文字描述内容
举例2:python dyDACQ.py 智己|LS7 |半年内 3 100 5——> 将获得以“智己 LS7”为关键词搜索半年内发布的按照默认综合排序的前100篇视频对应的文字描述内容及每篇笔记的前5条评论内容。

模块二 舆论分析

该模块基于模块一采集到的内容数据进行舆论分析,包括正负向情感分析、热门观点提取
执行commentAnalysis脚本完成数据分析工作,会获得comment_analysis_rst.csv
在这里插入图片描述

模块三 内容生成

  • 评论生成(commentGenerate):该模块基于模块二的舆论分析结果comment_analysis_rst.csv进行评论生成
    执行commentGenerate脚本,进行回复内容的生成,会获得comment_generate_rst.csv

  • 回复生成(replyGenerate):该模块基于模块二的舆论分析结果comment_analysis_rst.csv进行评论生成
    执行replyGenerate脚本,进行回复内容的生成,会获得reply_generate_rst.csv

    在这里插入图片描述

实时采集及内容发布

调用 xhsRealTimeRpaProcess.py,dyRealTimeRpaProcess.py,修改config文件,做相应的设置后,运行程序完成实时采集及内容发布。可在 xhsRealTimeRpaProcess_log.csv, xhsRealTimeRpaProcess_log.csv 中 监控跑批情况

{
	"xhs":{
		"keywords": "智己|LS7", //搜索关键词
		"filter": "最新|全部", //排序方式
		"limitnum":"100",//采集条数上限
		
		"process: {
			
			"condition":{  //筛选满足以下条件的笔记进行评论及回复处理,以下各条件是并且关系
				"likeNum":5 //点赞数大于等于5
				"chatNum":3 //评论回复交互数大于等于3
				"collectNum":0 //评论回复交互数大于等于0
				},
			"commentcnt":1, //对笔记进行评论,条数为1
			"commentsource":"comment_generate_rst.csv" //绝对路径
			
			"reply":{ //对评论进行回复处理
				"orderid":"[1,2,3]"    //前3个评论进行回复,举例[1,3]对第1个和第3个评论进行回复
				"contentuinique":"on" //对同一篇笔记下的多条评论进行逐一回复时,内容需要排重,不能满足排重该条评论不予回复;off为不需要排重
				"source":"comment_generate_rst.csv" //绝对路径
		},
		
    },

	"dy":{
		"keywords": "智己|LS7", //搜索关键词
		"filter": "最新|一周内", //排序方式
		"limitnum":"100",//采集条数上限
		
		"process: {
			
			"condition":{  //筛选满足以下条件的视频进行评论及回复处理,以下各条件是并且关系
				"likeNum":5 //点赞数大于等于5
				"chatNum":3 //评论回复交互数大于等于3
				"collectNum":0 //评论回复交互数大于等于0
				},
			"commentcnt":1, //对视频进行评论,条数为1
			"commentsource":"comment_generate_rst.csv" //绝对路径
			
			"reply":{ //对评论进行回复处理
				"orderid":"[1,2,3]"    //前3个评论进行回复,举例[1,3]对第1个和第3个评论进行回复
				"contentuinique":"on" //对同一篇笔记下的多条评论进行逐一回复时,内容需要排重,不能满足排重该条评论不予回复;off为不需要排重
				"source":"comment_generate_rst.csv" //绝对路径
		},
		
    }
	
}

模块四 内容发布

  • 实时获取评论内容,调用getCommentContent.py

getCommentContent.py:随机发布comment_generate_rst.csv中的一条
xhsCPUB.py 小红书发布评论
dyCPUB.py 抖音发布评论

入参:
在这里插入图片描述

出参

参数备注
commnetContentGenerated生成评论内容
  • 实时获取回复内容,调用getReplyContent.py

getReplyContent.py:评论内容关键词匹配reply_generate_rst.csv中aspect和syn,击中即随机发布对应的content中的一条。
xhsRPUB.py 小红书发布回复
dyRPUB.py 抖音发布回复
在这里插入图片描述
出参

参数备注
replyContentGenerated生成回复内容
构建一个新闻评论舆情热点分析平台是一项复杂的任务,涉及到数据抓取、处理、分析可视化等多个步骤。以下将详细说明如何利用Python及其生态系统中的工具来实现这一目标。 参考资源链接:[PYTHON驱动的网易新闻舆情热点分析平台](https://wenku.csdn.net/doc/331yccjn09) 首先,使用Python进行数据抓取。利用requests库可以轻松获取网络上的数据。例如,抓取新闻页面,代码如下: ```python import requests from bs4 import BeautifulSoup url = '***' response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') ``` 接着,使用BeautifulSoup解析HTML,提取出新闻标题评论等内容。 数据清洗预处理是分析前的关键步骤。可以使用pandas库来处理存储数据。例如,将新闻评论存储在DataFrame中,便于后续处理。 ```python import pandas as pd # 假设已经从页面中提取了新闻评论数据 news_data = pd.DataFrame(新闻数据) comments_data = pd.DataFrame(评论数据) ``` 然后,进行数据分析。这一步骤可能包括关键词提取、情感分析等。可以使用nltk或jieba进行中文分词,使用TextBlob或SnowNLP进行情感分析。 ```python import jieba from snownlp import SnowNLP # 中文分词示例 words = jieba.lcut(新闻或评论内容) # 情感分析示例 s = SnowNLP(新闻或评论内容) sentiment_score = s.sentiments ``` 数据分析后的可视化同样重要。使用matplotlib或seaborn库可以将分析结果图形化展示。 ```python import matplotlib.pyplot as plt import seaborn as sns # 数据可视化示例 sns.set() data_to_plot = comments_data['情感分数'] plt.hist(data_to_plot, bins=5, alpha=0.5) plt.title('评论情感分布') plt.xlabel('情感分数') plt.ylabel('评论数量') ``` 至于数据存储,可以使用MySQL数据库。利用Python的SQLAlchemy库进行数据库操作,实现数据的持久化存储。 ```python from sqlalchemy import create_engine import pymysql # 数据库连接示例 engine = create_engine('mysql+pymysql://username:password@localhost/dbname') comments_data.to_sql('comments_table', con=engine, if_exists='replace', index=False) ``` 最后,要实现一个完整的平台,还需开发一个Web界面让用户交互。可以使用Flask或Django框架,并利用HTML5来构建前端界面。 通过上述步骤,我们可以构建一个基本的新闻评论舆情热点分析平台。当然,实际应用中还需要考虑系统的可扩展性、性能优化安全性等因素。如果需要更深入的了解平台的设计与实现,建议阅读《PYTHON驱动的网易新闻舆情热点分析平台》,这份资料将为你提供一个详细的案例研究实现指南。 参考资源链接:[PYTHON驱动的网易新闻舆情热点分析平台](https://wenku.csdn.net/doc/331yccjn09)
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值