1、卷积
tf.nn.conv2d(
input,
filter,
strides,
padding,
use_cudnn_on_gpu=True,
data_format='NHWC'
dilations=[1,1,1,1],
name=None)
input:(batch,h,w,channels) #(每轮图片数量,图片高度,图片宽度,通道数)
filter(k_h,k_w,in,out) #(卷积核高度,卷积核宽度,需要卷积运算的图片的通道数,卷积核个数/输出通道数)
strides(1,s_h,s_w,1) #(s_h在高度方向上移动的步长,s_w在宽度方向上移动的步长)
padding:('SAME'/'VALID') #(SAME自动补0,输出大小不变,valid不补0
2、池化
tf.nn.max_pool(
value,
ksize,
strides,
padding,
data_format='NHWC',
name=None )
value: tensor(batch,h,w,channels) #(跟卷积一致)
ksize: tensor(1,k_h,k_w,1) # (池化核的高度和宽度)
strides: tensor(1,s_h,s_w,1) # (移动步长)