tensorflow卷积

1、卷积 

tf.nn.conv2d(
    input,
    filter,
    strides,
    padding,
    use_cudnn_on_gpu=True,
    data_format='NHWC'
    dilations=[1,1,1,1],
    name=None)

input:(batch,h,w,channels)       #(每轮图片数量,图片高度,图片宽度,通道数)

filter(k_h,k_w,in,out)                #(卷积核高度,卷积核宽度,需要卷积运算的图片的通道数,卷积核个数/输出通道数)

strides(1,s_h,s_w,1)                #(s_h在高度方向上移动的步长,s_w在宽度方向上移动的步长)

padding:('SAME'/'VALID')       #(SAME自动补0,输出大小不变,valid不补0

2、池化

tf.nn.max_pool(
    value,
    ksize,
    strides,
    padding,
    data_format='NHWC',
    name=None )

value: tensor(batch,h,w,channels)         #(跟卷积一致)

ksize: tensor(1,k_h,k_w,1)                     #  (池化核的高度和宽度)

strides: tensor(1,s_h,s_w,1)                  #  (移动步长)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值