S2A哨兵数据的波段合成、镶嵌、TOA(大气表观反射率)和裁剪的操作

声明:数据来自于网络。
如果看此博客看不懂具体的操作,可以看我发布的视频。
此操作的视频教程,我已发到今日头条上,可以关注我的今日头条进行学习。或者直接搜索我的今日头条号:遥感科学家小圆。
在这里插入图片描述
这是链接:
https://www.ixigua.com/i6828473082307411975/

这是两期的哨兵数据,都是2017年的,已经做过layer stacking处理。
在这里插入图片描述
波段合成的具体意义,可以观看我的视频教程学习,这里不详细介绍为什么做波段合成了。
可以看到共有6个波段,有第十一和第十二波段。
在这里插入图片描述
对两期数据进行镶嵌处理,使用的工具如下图所示。

在这里插入图片描述
镶嵌的参数界面设置,此次不用生成接边线,其他参数设置默认即可。如果精度要求比较高,可以对参数调整。
在这里插入图片描述
设置输出路径。
在这里插入图片描述
查看输出后的数据。值是介于0-20000之间的。
在这里插入图片描述
进行TOA 的操作,为什么选择波段运算的方式计算表观反射率,可以看视频解释。
在这里插入图片描述
TOA 的参数界面设置。
在这里插入图片描述
命名方式:
在这里插入图片描述
输出处理之后的值,如图所示,已经缩小了一万倍。
在这里插入图片描述
利用矢量数据对数据裁剪,完成预处理。
在这里插入图片描述

参考资源链接:[航天宏图PIE-Engine Studio:数据资源与常用卫星介绍](https://wenku.csdn.net/doc/180xfzfeie?utm_source=wenku_answer2doc_content) Landsat8 TOA数据集虽然是经过大气校正的数据,但仍需要根据具体的应用场景用户需求进一步处理以获取更精确的地表反射率。在PIE-Engine Studio中,你可以按照以下步骤进行大气校正: 1. 访问PIE-Engine Studio平台,并登录你的账户。 2. 从数据资源库中导入所需的Landsat8 TOA数据集。 3. 利用PIE-Engine提供的预处理功能,首进行辐射校正,确保数据的辐射量的准确性。 4. 根据需要选择适合的大气校正模型。常用的大气校正模型包括FLAASH(Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes)6S(Second Simulation of the Satellite Signal in the Solar Spectrum)等。 5. 应用大气校正模型到Landsat8 TOA数据集上,输入必要的参数,如气溶胶类型、气溶胶光学厚度、水汽含量等,这些参数可以通过气象站数据、卫星观测资料或者其他辅助信息获得。 6. 运行大气校正算法,处理完毕后,你将获得包含更准确地表反射率大气校正数据。 此外,PIE-Engine Studio可能还内置了一些自动化的大气校正工具或服务,你可以通过阅读官方文档或参加相关培训来深入了解如何使用这些工具。 完成这些步骤后,你将得到更加精确的遥感数据,这对于后续的分类、变化检测等分析工作至关重要。如果你希望深入学习遥感数据处理的更多细节,推荐阅读《航天宏图PIE-Engine Studio:数据资源与常用卫星介绍》。这本资料详细介绍了PIE-Engine Studio的功能使用方法,特别是对于各种卫星数据的获取、处理应用进行了全面的讲解,可以为你提供更加深入全面的知识支持。 参考资源链接:[航天宏图PIE-Engine Studio:数据资源与常用卫星介绍](https://wenku.csdn.net/doc/180xfzfeie?utm_source=wenku_answer2doc_content)
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值