极大似然估计

极大似然估计

贝叶斯决策

P ( w ∣ x ) = P ( x ∣ w ) P ( w ) P ( x ) P(w|x)=\frac{P(x|w)P(w)}{P(x)} P(wx)=P(x)P(xw)P(w)

P ( w ) P(w) P(w):先验概率 Priori probability,代表每种类别分布的概率
P ( x ∣ w ) P(x|w) P(xw):类条件概率 ,在某种类别前提下某事的概率
P ( w ∣ x ) P(w|x) P(wx):后验概率

问题引出

数据:有限数目的样本数据。 P ( w ) , P ( x ∣ w ) P(w),P(x|w) P(w),P(xw)都未知,需要估计, P ( w ) P(w) P(w)比较好估计,估计类条件概率非常难。

办法:把估计概率密度 P ( x ∣ w ) P(x|w) P(xw)转化为参数估计,概率密度函数选取非常重要。

前提:1、训练样本分布可代表所有;2、独立通分布;3、有充分的训练样本

极大似然

目的:利用已知样本,反推最可能导致这一结果的参数值

样本: D = { x 1 , x 2 , . . . , x n } D=\{x_1,x_2,...,x_n\} D={x1,x2,...,xn}

似然函数:
l ( θ ) = P ( D ∣ θ ) = P ( x 1 , x 2 , . . . x n ∣ θ ) = ∏ i = 1 N P ( x i ∣ θ ) l(\theta)=P(D|\theta)=P(x_1,x_2,...x_n|\theta)=\prod_{i=1}^{N}P(x_i|\theta) l(θ)=P(Dθ)=P(x1,x2,...xnθ)=i=1NP(xiθ)

P()为假设的概率分布函数。

θ ^ \hat \theta θ^使似然函数最大,则其就是极大似然估计量

求解极大似然函数

θ ^ = argmax ⁡ ∏ i = 1 N P ( x i ∣ θ ) θ \hat\theta=\underset{\theta}{\operatorname{argmax}\prod_{i=1}^{N}P(x_i|\theta)} θ^=θargmaxi=1NP(xiθ)

对数似然
H ( θ ) = ln ⁡ l ( θ ) H(\theta)=\ln{l(\theta)} H(θ)=lnl(θ)
θ ^ = argmax ⁡ ∑ i = 1 N ln ⁡ P ( x i ∣ θ ) θ \hat\theta=\underset{\theta}{\operatorname{argmax}\sum_{i=1}^{N}\ln{P(x_i|\theta)}} θ^=θargmaxi=1NlnP(xiθ)

一个 θ \theta θ
d l ( θ ) d θ = 0 \frac{dl(\theta)}{d\theta}=0 dθdl(θ)=0

θ \theta θ向量:

∇ θ H ( θ ) = 0 \nabla_\theta H(\theta)=0 θH(θ)=0

似然与概率

概率:在特定环境下某件事情发生的可能性 P ( x ∣ θ ) P(x|\theta) P(xθ)
似然:在确定的结果下推测这个结果可能的环境 L ( θ ∣ x ) L(\theta|x) L(θx)

对数化似然函数

因为在MLE中经常对于多个独立时间求:

L = ∏ i = 1 N P i L=\prod_{i=1}^{N} P_i L=i=1NPi

对多项式的乘积求导复杂,而对多项式和的求导简单,且对数函数不改变原函数的单调性和极值位置。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值