红黑树讲解

一、定义

R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。
红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。

红黑树规则特点:

1、每个节点或者是黑色,或者是红色。
2、根节点是黑色。
3、每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!]
4、如果一个节点是红色的,则它的子节点必须是黑色的。
5、从一个节点到该节点的子孙节点的所有路径上包含相同数目的黑节点。

注意:
1、特性(3)中的叶子节点,是只为空(NIL或null)的节点。
2、特性(5),确保没有一条路径会比其他路径长出俩倍。因而,红黑树是相对是接近平衡的二叉树。

一个典型的红黑树:
在这里插入图片描述
首先解读一下规则,除了字面上看到的意思,还隐藏了哪些意思呢?
第一. 从根节点到叶子节点的最长路径不大于最短路径的2倍
怎么样的路径算最短路径?

从规则5中,我们知道从根节点到每个叶子节点的黑色节点数量是一样的,那么纯由黑色节点组成的路径就是最短路径;

什么样的路径算是最长路径?

根据规则4和规则3,若有红色节点,则必然有一个连接的黑色节点,当红色节点和黑色节点数量相同时,就是最长路径,也就是黑色节点(或红色节点)*

第二. 为什么说新加入到红黑树中的节点为红色节点
从规则4中知道,当前红黑树中从根节点到每个叶子节点的黑色节点数量是一样的,此时假如新的黑色节点的话,必然破坏规则,但加入红色节点却不一定,除非其父节点就是红色节点,因此加入红色节点,破坏规则的可能性小一些,下面我们也会举例来说明。
什么情况下,红黑树的结构会被破坏呢?破坏后又怎么维持平衡,维持平衡主要通过两种方式【变色】和【旋转】,【旋转】又分【左旋】和【右旋】,两种方式可相互结合。

二、红黑树节点基本操作

红黑树的基本操作是添加删除。在对红黑树进行添加或删除之后,都会用到旋转方法。为什么呢?道理很简单,添加或删除红黑树中的节点之后,红黑树就发生了变化,可能不满足红黑树的5条性质,也就不再是一颗红黑树了,而是一颗普通的树。而通过旋转,可以使这颗树重新成为红黑树。简单点说,旋转的目的是让树保持红黑树的特性。
旋转包括两种:左旋右旋。下面分别对它们进行介绍。

2.1、左旋

逆时针旋转两个节点,让一个节点被其右子节点取代,而该节点成为右子节点的左子节点
左旋操作步骤:
首先断开节点PL与右子节点G的关系,同时将其右子节点的引用指向节点C2;然后断开节点G与左子节点C2的关系,同时将G的左子节点的应用指向节点PL。
在这里插入图片描述
左旋的伪代码《算法导论》:参考上面的示意图和下面的伪代码,理解“红黑树T的节点x进行左旋”是如何进行的。

LEFT-ROTATE(T, x)  
01  y = x.right            // 前提:这里假设x的右孩子为y。下面开始正式操作
02  x.right == y.left      // 将 “y的左孩子” 设为 “x的右孩子”,即 将β设为x的右孩子
03	if y.left ≠ T.nil
04  	y.left.p = x          // 将 “x” 设为 “y的左孩子的父亲”,即 将β的父亲设为x
04  y.p = x.p             // 将 “x的父亲” 设为 “y的父亲”
05  if x.p == T.nil      
06  	then T.root = y      // 情况1:如果 “x的父亲” 是空节点,则将y设为根节点
07  else if x == x.p.left  
08		x.p.left = y    // 情况2:如果 x是它父节点的左孩子,则将y设为“x的父节点的左孩子”
09 else x.p.right = y   // 情况3:(x是它父节点的右孩子) 将y设为“x的父节点的右孩子”
10  y.left = x             // 将 “x” 设为 “y的左孩子”
11  x.p = y                // 将 “x的父节点” 设为 “y”

在这里插入图片描述

2.2、右旋

顺时针旋转两个节点,让一个节点被其左子节点取代,而该节点成为左子节点的右子节点
右旋操作步骤:
首先断开节点G与左子节点PL的关系,同时将其左子节点的引用指向节点C2;然后断开节点PL与右子节点C2的关系,同时将PL的右子节点的应用指向节点G。
在这里插入图片描述
右旋的伪代码《算法导论》:参考上面的示意图和下面的伪代码,理解“红黑树T的节点x进行左旋”是如何进行的。

RIGHT-ROTATE(T, y)  
01  x = y.left              // 前提:这里假设y的左孩子为x。下面开始正式操作
02  y.left = x.right        // 将 “x的右孩子” 设为 “y的左孩子”,即 将β设为y的左孩子
03  x.right.p = y           // 将 “y” 设为 “x的右孩子的父亲”,即 将β的父亲设为y
04  x.p = y.p               // 将 “y的父亲” 设为 “x的父亲”
05  if y.p == T.nil       
06  	T.root = x          // 情况1:如果 “y的父亲” 是空节点,则将x设为根节点
07  else if y = y.p.right  
08		y.p.right = x       // 情况2:如果 y是它父节点的右孩子,则将x设为“y的父节点的左孩子”
09  else y.p.left = x       // 情况3:(y是它父节点的左孩子) 将x设为“y的父节点的左孩子”
10  x.right = y             // 将 “y” 设为 “x的右孩子”
11  y.p = x                 // 将 “y的父节点” 设为 “x”

在这里插入图片描述

三、红黑树节点插入

插入操作的伪代码《算法导论》:先利用一个简单的二叉搜索树插入操作,将节点Z插入树T中,然后将Z着色为红色。为保证红黑树的性质,我们调用一个辅助程序RB-INSERT-FIXUP来对节点进行重新着色和旋转。

RB-INSERT(T, z)  
01  y = T.nil                        // 新建节点“y”,将y设为空节点。
02  x = T.root                       // 设“红黑树T”的根节点为“x”
03  while x ≠ T.nil                  // 找出要插入的节点“z”在二叉树T中的位置“y”
04		y = x                      
05      if z.key < x.key  
06      	x = x.left  
07      else x = x.right  
08  z.p ← y                          // 设置 “z的父亲” 为 “y”
09  if y == T.nil                     
10     T.root = z                    // 情况1:若y是空节点,则将z设为根
11  else if z.key < y.key        
12     y.left = z                    // 情况2:若“z所包含的值” < “y所包含的值”,则将z设为“y的左孩子”
13  else y.right = z                 // 情况3:(“z所包含的值” >= “y所包含的值”)将z设为“y的右孩子” 
14  z.left = T.nil                   // z的左孩子设为空
15  z.right = T.nil                  // z的右孩子设为空。至此,已经完成将“节点z插入到二叉树”中了。
16  z.color = RED                    // 将z着色为“红色”
17  RB-INSERT-FIXUP(T, z)            // 通过RB-INSERT-FIXUP对红黑树的节点进行颜色修改以及旋转,让树T仍然是一颗红黑树

添加修正操作的伪代码《算法导论》:

RB-INSERT-FIXUP(T, z)
01 	while z.p.color = RED                            // 若“当前节点z父节点是红色”,则进行以下处理。
02		if z.p = z.p.p.left                          // 若z父节点是“z祖父节点的左孩子,用以下处理。
03      	y = z.p.p.right                          // 将y设置为“z的叔叔节点(z的祖父节点的右孩子)”
04          if y.color = RED                         // Case 1条件:叔叔是红色
05          	z.p.color = BLACK        ▹ Case 1   //  (01) 将“父节点”设为黑色。
06              y.color = BLACK          ▹ Case 1   //  (02) 将“叔叔节点”设为黑色。
07              z.p.p.color = RED        ▹ Case 1   //  (03) 将“祖父节点”设为“红色”。
08              z = z.p.p                ▹ Case 1   //  (04) 将“祖父节点”设为“当前节点”(红色节点)
09          else if z = z.p.right                    // Case 2条件:叔叔是黑色,且当前节点是右孩子
10          	z = z.p                  ▹ Case 2   //  (01) 将“父节点”作为“新的当前节点”。
11              LEFT-ROTATE(T, z)        ▹ Case 2   //  (02) 以“新的当前节点”为支点进行左旋。
12          else if z = z.p.left                    // Case 3条件:叔叔是黑色,且当前节点是左孩子。(01) 将“父节点”设为“黑色”。
				z.p.color = BLACK        ▹ Case 3   
13          	z.p.p.color = RED        ▹ Case 3   //  (02) 将“祖父节点”设为“红色”。
14          	RIGHT-ROTATE(T, z.p.p)   ▹ Case 3   //  (03) 以“祖父节点”为支点进行右旋。
15		else (same as then clause with "right" and "left" exchanged)      // 若“z的父节点”是“z的祖父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
16 T.root.color = BLACK

根据被插入节点的父节点的情况,可以将"当节点z被着色为红色节点,并插入二叉树"划分为三种情况来处理。

  1. 情况说明:被插入的节点是根节点。
    处理方法:直接把此节点涂为黑色。
  2. 情况说明:被插入的节点的父节点是黑色。
    处理方法:什么也不需要做。节点被插入后,仍然是红黑树。
  3. 情况说明:被插入的节点的父节点是红色。
    处理方法:那么,该情况与红黑树的“特性(5)”相冲突。这种情况下,被插入节点是一定存在非空祖父节点的;进一步的讲,被插入节点也一定存在叔叔节点(即使叔叔节点为空,我们也视之为存在,空节点本身就是黑色节点)。理解这点之后,我们依据"叔叔节点的情况",将这种情况进一步划分为3种情况(Case)。
现象说明处理策略
case 1 当前节点的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色。(01) 将“父节点”设为黑色。
(02) 将“叔叔节点”设为黑色。
(03) 将“祖父节点”设为“红色”。
(04) 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。
case 2 当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子(01) 将“父节点”作为“新的当前节点”。
(02) 以“新的当前节点”为支点进行左旋。
case 3 当前节点的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子(01) 将“父节点”设为“黑色”。
(02) 将“祖父节点”设为“红色”。
(03) 以“祖父节点”为支点进行右旋。

3.1、case1 叔叔是红色

现象说明:
当前节点(即,被插入节点)的父节点是红色,且当前节点的祖父节点的另一个子节点(叔叔节点)也是红色。

处理策略:
(01) 将“父节点”设为黑色。
(02) 将“叔叔节点”设为黑色。
(03) 将“祖父节点”设为“红色”。
(04) 将“祖父节点”设为“当前节点”(红色节点);即,之后继续对“当前节点”进行操作。

这样做理解:
“当前节点”和“父节点”都是红色,违背“特性(4)”。所以,将“父节点”设置“黑色”以解决这个问题。
但是,将“父节点”由“红色”变成“黑色”之后,违背了“特性(5)”:因为,包含“父节点”的分支的黑色节点的总数增加了1。 解决这个问题的办法是:将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”。关于这里,说明几点:第一,为什么“祖父节点”之前是黑色?这个应该很容易想明白,因为在变换操作之前,该树是红黑树,“父节点”是红色,那么“祖父节点”一定是黑色。 第二,为什么将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;能解决“包含‘父节点’的分支的黑色节点的总数增加了1”的问题。这个道理也很简单。“包含‘父节点’的分支的黑色节点的总数增加了1” 同时也意味着 “包含‘祖父节点’的分支的黑色节点的总数增加了1”,既然这样,我们通过将“祖父节点”由“黑色”变成“红色”以解决“包含‘祖父节点’的分支的黑色节点的总数增加了1”的问题; 但是,这样处理之后又会引起另一个问题“包含‘叔叔’节点的分支的黑色节点的总数减少了1”,现在我们已知“叔叔节点”是“红色”,将“叔叔节点”设为“黑色”就能解决这个问题。 所以,将“祖父节点”由“黑色”变成红色,同时,将“叔叔节点”由“红色”变成“黑色”;就解决了该问题。
按照上面的步骤处理之后:当前节点、父节点、叔叔节点之间都不会违背红黑树特性,但祖父节点却不一定。若此时,祖父节点是根节点,直接将祖父节点设为“黑色”,那就完全解决这个问题了;若祖父节点不是根节点,那我们需要将“祖父节点”设为“新的当前节点”,接着对“新的当前节点”进行分析。

示意图: 在这里插入图片描述

3.2、case2 叔叔是黑色,且当前节点是右孩子

现象说明:
当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的右孩子

处理策略:
(01) 将“父节点”作为“新的当前节点”。
(02) 以“新的当前节点”为支点进行左旋。

这样做理解:
首先,将“父节点”作为“新的当前节点”;接着,以“新的当前节点”为支点进行左旋。 为了便于理解,我们先说明第(02)步,再说明第(01)步;为了便于说明,我们设置“父节点”的代号为F(Father),“当前节点”的代号为S(Son)。
为什么要“以F为支点进行左旋”呢?根据已知条件可知:S是F的右孩子。而之前我们说过,我们处理红黑树的核心思想:将红色的节点移到根节点;然后,将根节点设为黑色。既然是“将红色的节点移到根节点”,那就是说要不断的将破坏红黑树特性的红色节点上移(即向根方向移动)。 而S又是一个右孩子,因此,我们可以通过“左旋”来将S上移!
按照上面的步骤(以F为支点进行左旋)处理之后:若S变成了根节点,那么直接将其设为“黑色”,就完全解决问题了;若S不是根节点,那我们需要执行步骤(01),即“将F设为‘新的当前节点’”。那为什么不继续以S为新的当前节点继续处理,而需要以F为新的当前节点来进行处理呢?这是因为“左旋”之后,F变成了S的“子节点”,即S变成了F的父节点;而我们处理问题的时候,需要从下至上(由叶到根)方向进行处理;也就是说,必须先解决“孩子”的问题,再解决“父亲”的问题;所以,我们执行步骤(01):将“父节点”作为“新的当前节点”。

示意图:
在这里插入图片描述

3.3、case3 叔叔是黑色,且当前节点是左孩子

现象说明:
当前节点(即,被插入节点)的父节点是红色,叔叔节点是黑色,且当前节点是其父节点的左孩子

处理策略:
(01) 将“父节点”设为“黑色”。
(02) 将“祖父节点”设为“红色”。
(03) 以“祖父节点”为支点进行右旋。

这样做理解:
为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“叔叔节点”为U(Uncle),“父节点”为F(Father),祖父节点为G(Grand-Father)。
S和F都是红色,违背了红黑树的“特性(4)”,我们可以将F由“红色”变为“黑色”,就解决了“违背‘特性(4)’”的问题;但却引起了其它问题:违背特性(5),因为将F由红色改为黑色之后,所有经过F的分支的黑色节点的个数增加了1。那我们如何解决“所有经过F的分支的黑色节点的个数增加了1”的问题呢? 我们可以通过“将G由黑色变成红色”,同时“以G为支点进行右旋”来解决。

示意图:
在这里插入图片描述

四、红黑树节点删除

将红黑树内的某一个节点删除。需要执行的操作依次是:首先,将红黑树当作一颗二叉查找树,将该节点从二叉查找树中删除;然后,通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。详细描述如下:
第一步:将红黑树当作一颗二叉查找树,将节点删除。
这和"删除常规二叉查找树中删除节点的方法是一样的"。分3种情况:
① 被删除节点没有儿子,即为叶节点。那么,直接将该节点删除就OK了。
② 被删除节点只有一个儿子。那么,直接删除该节点,并用该节点的唯一子节点顶替它的位置。
③ 被删除节点有两个儿子。那么,先找出它的后继节点;然后把“它的后继节点的内容”复制给“该节点的内容”;之后,删除“它的后继节点”。在这里,后继节点相当于替身,在将后继节点的内容复制给"被删除节点"之后,再将后继节点删除。这样就巧妙的将问题转换为"删除后继节点"的情况了,下面就考虑后继节点。 在"被删除节点"有两个非空子节点的情况下,它的后继节点不可能是双子非空。既然"的后继节点"不可能双子都非空,就意味着"该节点的后继节点"要么没有儿子,要么只有一个儿子。若没有儿子,则按"情况① "进行处理;若只有一个儿子,则按"情况② "进行处理。
第二步:通过"旋转和重新着色"等一系列来修正该树,使之重新成为一棵红黑树。
因为"第一步"中删除节点之后,可能会违背红黑树的特性。所以需要通过"旋转和重新着色"来修正该树,使之重新成为一棵红黑树。

删除操作的伪代码《算法导论》:当想删除节点Z,且此时Z的子节点少于2个时,Z从树中删除,并让y成为Z。当Z有两个子节点时,y应该是Z的后继,并且y将移至树中的z位置。在节点被移除或者在树中移动之前,必须记住y的颜色,并且记录节点x的踪迹,将x移至树中y的原来位置,因为节点x也可能引起红黑性质的破坏。删除节点z之后,RB-DELETE调用一个辅助过程RB-DELETE-FIXUP,该过程通过改变颜色和执行旋转来恢复红黑性质。

RB-DELETE(T,z)                          // 待删除节点Z
  	y = z             
  	y-original-color = y.color          // 记录原来颜色
  	if z.left == T.nil                  // 处理没有左孩子情况
		x = z.right                     // 记录x为右孩子
		RB-TRANSPLANT(T,z,z.right)      // 用一棵以z.right为根子树替换以z为根的子树
	else if z.right == T.nil            // 同理处理有左孩子没有右孩子情况
		x = z.left
		RB-TRANSPLANT(T,z,z.left)
	else                                // 处理有两个子节点情况
		y = TREE-MINIMUM(z.right)       // 找节点y是Z的后继
		y-original-color = y.color      // 记录原来颜色
		x = y.right
		if y.p == z                     // y的原父节点就是z情况
			x.p = y
		else RB-TRANSPLANT(T,y,y.right)
			y.right = z.right
			y.right.p = y
		RB-TRANSPLANT(T,z,y)
		y.left = z.left
		y.left.p = y
		y.color = z.color
	if y-original-color == BLACK
		RB-DELETE-FIXUP(T,x)

辅助过程RB-TRANSPLANT(T,u,v),它是用另一颗子树替换一棵子树并成为其双亲的孩子节点。当调用RB-TRANSPLANT用一棵以v为根的子树来替换一棵以u为根的子树时,节点u的双亲就变成节点v的双亲,并且最后v成为u的双亲相应的孩子

RB-TRANSPLANT(T,u,v)
	if u.p == T.nil
		T.root = v
	else if u == u.p.left
		u.p.left = v
	else u.p.right = v
	v.p = u.p

接着对伪代码RB-DELETE-FIXUP进行说明:

RB-DELETE-FIXUP(T, x)
01 	while x ≠ T.root and x.color == BLACK  
02		if x == x.p.left     
03      	w = x.p.right                                   // 若 “x”是“它父节点的左孩子”,则设置 “w”为“x的叔叔”(即x为它父节点的右孩子)                                          
04          if w.color == RED                               // Case 1: x是“黑+黑”节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。
05          	w.color = BLACK                ▹  Case 1   //   (01) 将x的兄弟节点设为“黑色”。
06              x.p.color = RED                ▹  Case 1   //   (02) 将x的父节点设为“红色”。
07              LEFT-ROTATE(T, x.p)            ▹  Case 1   //   (03) 对x的父节点进行左旋。
08              w = x.p.right                  ▹  Case 1   //   (04) 左旋后,重新设置x的兄弟节点。
09          if w.left.color = BLACK and w.right.color = BLACK // Case 2: x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。
10              w.color ← RED                  ▹  Case 2   //   (01) 将x的兄弟节点设为“红色”。
11              x =  x.p                       ▹  Case 2   //   (02) 设置“x的父节点”为“新的x节点”。
12          else if w.right.color = BLACK                  // Case 3: x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。
13          	w.left.color = BLACK           ▹  Case 3   //   (01) 将x兄弟节点的左孩子设为“黑色”。
14              w.color = RED                  ▹  Case 3   //   (02) 将x兄弟节点设为“红色”。
15              RIGHT-ROTATE(T, w)             ▹  Case 3   //   (03) 对x的兄弟节点进行右旋。
16              w = x.p.right                  ▹  Case 3   //   (04) 右旋后,重新设置x的兄弟节点。
			 else
17              w.color = x.p.color            ▹  Case 4   // Case 4: x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的。(01) 将x父节点颜色 赋值给 x的兄弟节点。
18              x.p.color = BLACK              ▹  Case 4   //   (02) 将x父节点设为“黑色”。
19              w.right.color = BLACK          ▹  Case 4   //   (03) 将x兄弟节点的右子节设为“黑色”。
20              LEFT-ROTATE(T, x.p)            ▹  Case 4   //   (04) 对x的父节点进行左旋。
21              x ← root[T]                    ▹  Case 4   //   (05) 设置“x”为“根节点”。
22		else (same as then clause with "right" and "left" exchanged) // 若 “x”是“它父节点的右孩子”,将上面的操作中“right”和“left”交换位置,然后依次执行。
23 x.color = BLACK

前面我们将"删除红黑树中的节点"大致分为两步,在第一步中"将红黑树当作一颗二叉查找树,将节点删除"后,可能违反"特性(2)、(4)、(5)“三个特性。第二步需要解决上面的三个问题,进而保持红黑树的全部特性。
为了便于分析,我们假设"x包含一个额外的黑色”(x原本的颜色还存在),这样就不会违反"特性(5)"。为什么呢?
通过RB-DELETE算法,我们知道:删除节点y之后,x占据了原来节点y的位置。 既然删除y(y是黑色),意味着减少一个黑色节点;那么,再在该位置上增加一个黑色即可。这样,当我们假设"x包含一个额外的黑色",就正好弥补了"删除y所丢失的黑色节点",也就不会违反"特性(5)"。 因此,假设"x包含一个额外的黑色"(x原本的颜色还存在),这样就不会违反"特性(5)"。
现在,x不仅包含它原本的颜色属性,x还包含一个额外的黑色。即x的颜色属性是"红+黑"或"黑+黑",它违反了"特性(1)"。
现在,我们面临的问题,由解决"违反了特性(2)、(4)、(5)三个特性"转换成了"解决违反特性(1)、(2)、(4)三个特性"。RB-DELETE-FIXUP需要做的就是通过算法恢复红黑树的特性(1)、(2)、(4)。RB-DELETE-FIXUP的思想是:将x所包含的额外的黑色不断沿树上移(向根方向移动),直到出现下面的姿态:
a) x指向一个"红+黑"节点。此时,将x设为一个"黑"节点即可。
b) x指向根。此时,将x设为一个"黑"节点即可。
c) 非前面两种姿态。
将上面的姿态,可以概括为3种情况。
① 情况说明:x是“红+黑”节点。
处理方法:直接把x设为黑色,结束。此时红黑树性质全部恢复。
② 情况说明:x是“黑+黑”节点,且x是根。
处理方法:什么都不做,结束。此时红黑树性质全部恢复。
③ 情况说明:x是“黑+黑”节点,且x不是根。
处理方法:这种情况又可以划分为4种子情况。这4种子情况如下表所示:

现象说明处理策略
case 1 x是"黑+黑"节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。(01) 将x的兄弟节点设为“黑色”。
(02) 将x的父节点设为“红色”。
(03) 对x的父节点进行左旋。
(04) 左旋后,重新设置x的兄弟节点。
case 2 x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。(01) 将x的兄弟节点设为“红色”。
(02) 设置“x的父节点”为“新的x节点”。
case 3 x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。(01) 将x兄弟节点的左孩子设为“黑色”。
(02) 将x兄弟节点设为“红色”。
(03) 对x的兄弟节点进行右旋。
(04) 右旋后,重新设置x的兄弟节点。
case 4 x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色。(01) 将x父节点颜色 赋值给 x的兄弟节点。
(02) 将x父节点设为“黑色”。
(03) 将x兄弟节点的右子节设为“黑色”。
(04) 对x的父节点进行左旋。
(05) 设置“x”为“根节点”。

4.1、x是"黑+黑"节点,x的兄弟节点是红色

现象说明:
x是"黑+黑"节点,x的兄弟节点是红色。(此时x的父节点和x的兄弟节点的子节点都是黑节点)。

处理策略:
(01) 将x的兄弟节点设为“黑色”。
(02) 将x的父节点设为“红色”。
(03) 对x的父节点进行左旋。
(04) 左旋后,重新设置x的兄弟节点。

这样做理解:
这样做的目的是将“Case 1”转换为“Case 2”、“Case 3”或“Case 4”,从而进行进一步的处理。对x的父节点进行左旋;左旋后,为了保持红黑树特性,就需要在左旋前“将x的兄弟节点设为黑色”,同时“将x的父节点设为红色”;左旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。

示意图:
在这里插入图片描述

4.2、x是"黑+黑"节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色

现象说明:
x是“黑+黑”节点,x的兄弟节点是黑色,x的兄弟节点的两个孩子都是黑色。

处理策略:
(01) 将x的兄弟节点设为“红色”。
(02) 设置“x的父节点”为“新的x节点”。

这样做理解:
这个情况的处理思想:是将“x中多余的一个黑色属性上移(往根方向移动)”。 x是“黑+黑”节点,我们将x由“黑+黑”节点 变成 “黑”节点,多余的一个“黑”属性移到x的父节点中,即x的父节点多出了一个黑属性(若x的父节点原先是“黑”,则此时变成了“黑+黑”;若x的父节点原先时“红”,则此时变成了“红+黑”)。 此时,需要注意的是:所有经过x的分支中黑节点个数没变化;但是,所有经过x的兄弟节点的分支中黑色节点的个数增加了1(因为x的父节点多了一个黑色属性)!为了解决这个问题,我们需要将“所有经过x的兄弟节点的分支中黑色节点的个数减1”即可,那么就可以通过“将x的兄弟节点由黑色变成红色”来实现。
经过上面的步骤(将x的兄弟节点设为红色),多余的一个颜色属性(黑色)已经跑到x的父节点中。我们需要将x的父节点设为“新的x节点”进行处理。若“新的x节点”是“黑+红”,直接将“新的x节点”设为黑色,即可完全解决该问题;若“新的x节点”是“黑+黑”,则需要对“新的x节点”进行进一步处理。

示意图:
在这里插入图片描述

4.3、x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的

现象说明:
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的左孩子是红色,右孩子是黑色的。

处理策略:
(01) 将x兄弟节点的左孩子设为“黑色”。
(02) 将x兄弟节点设为“红色”。
(03) 对x的兄弟节点进行右旋。
(04) 右旋后,重新设置x的兄弟节点。

这样做理解:
我们处理“Case 3”的目的是为了将“Case 3”进行转换,转换成“Case 4”,从而进行进一步的处理。转换的方式是对x的兄弟节点进行右旋;为了保证右旋后,它仍然是红黑树,就需要在右旋前“将x的兄弟节点的左孩子设为黑色”,同时“将x的兄弟节点设为红色”;右旋后,由于x的兄弟节点发生了变化,需要更新x的兄弟节点,从而进行后续处理。

示意图:
在这里插入图片描述

4.4、x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色

现象说明:
x是“黑+黑”节点,x的兄弟节点是黑色;x的兄弟节点的右孩子是红色的,x的兄弟节点的左孩子任意颜色。

处理策略:
(01) 将x父节点颜色 赋值给 x的兄弟节点。
(02) 将x父节点设为“黑色”。
(03) 将x兄弟节点的右子节设为“黑色”。
(04) 对x的父节点进行左旋。
(05) 设置“x”为“根节点”。

这样做理解:
我们处理“Case 4”的目的是:去掉x中额外的黑色,将x变成单独的黑色。处理的方式是“:进行颜色修改,然后对x的父节点进行左旋。下面,我们来分析是如何实现的。
为了便于说明,我们设置“当前节点”为S(Original Son),“兄弟节点”为B(Brother),“兄弟节点的左孩子”为BLS(Brother’s Left Son),“兄弟节点的右孩子”为BRS(Brother’s Right Son),“父节点”为F(Father)。
我们要对F进行左旋。但在左旋前,我们需要调换F和B的颜色,并设置BRS为黑色。为什么需要这里处理呢?因为左旋后,F和BLS是父子关系,而我们已知BL是红色,如果F是红色,则违背了“特性(4)”;为了解决这一问题,我们将“F设置为黑色”。 但是,F设置为黑色之后,为了保证满足“特性(5)”,即为了保证左旋之后:
第一,“同时经过根节点和S的分支的黑色节点个数不变”。
若满足“第一”,只需要S丢弃它多余的颜色即可。因为S的颜色是“黑+黑”,而左旋后“同时经过根节点和S的分支的黑色节点个数”增加了1;现在,只需将S由“黑+黑”变成单独的“黑”节点,即可满足“第一”。
第二,“同时经过根节点和BLS的分支的黑色节点数不变”。
若满足“第二”,只需要将“F的原始颜色”赋值给B即可。之前,我们已经将“F设置为黑色”(即,将B的颜色"黑色",赋值给了F)。至此,我们算是调换了F和B的颜色。
第三,“同时经过根节点和BRS的分支的黑色节点数不变”。
在“第二”已经满足的情况下,若要满足“第三”,只需要将BRS设置为“黑色”即可。
经过,上面的处理之后。红黑树的特性全部得到的满足!接着,我们将x设为根节点,就可以跳出while循环(参考伪代码);即完成了全部处理。

至此,我们就完成了Case 4的处理。理解Case 4的核心,是了解如何“去掉当前节点额外的黑色”。

示意图:
在这里插入图片描述

参看一篇博客,原文链接:https://www.cnblogs.com/skywang12345/p/3245399.html

五、参考资料

红黑树原理
红黑树C语言实现
红黑树在Linux经典实现
红黑树C++实现

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值