华为昇腾环境(MindIE)
参考资料: https://modelers.cn/models/MindIE/deepseekv3
部署DeepSeek-V3、R1模型浮点权重至少需要4台Atlas 800I A2(8x64G)服务器,W8A8量化权重至少需要2台Atlas 800I A2(8x64G服务器)
在昇腾上量化deepsee模型可参考:https://gitee.com/ascend/msit/tree/br_noncom_MindStudio_8.0.0_POC_20251231/msmodelslim/example/DeepSeek
上述方法可将deepseek量化为W8A8或者W8A16模型。
SGlang本地部署
参考资料:https://github.com/sgl-project/sglang/tree/main/benchmark/deepseek_v3
使用英伟达显卡,本地部署大概需要8 x H200 GPUs,总共1128GB显存。H20或者A100,需要大该2个8卡的节点。
使用AMD显卡,至少需要8x MI300X GPUs.
Ollama部署量化模型
参考资料:https://huggingface.co/unsloth/DeepSeek-R1-GGUF
这里从1.5到8bit的模型都有,体积小了很多,可以单机多卡部署了。2bit大概要200+GB的显存。