80老翁谈人生(4):智能机器人上阵,微积分下放中学
当今,微积分怎样下放中学,是人们一直在思考的问题。在上世纪80年代,根据美国、新西兰等国的讲授经验,在中学高级阶段讲授非标准微积分(即实无穷小微积分)显著优于传讲授统的基于极限论的微积分的效果。那么,为什么在我国微积分学(初等知识)不能够下放到中学的高级阶段讲授呢?
回顾以往,马克思在数学手稿中说过:在微分(即求导)过程中,在量的否定,比如量的消失中,看到其间仍保存着特定的质的关系,即y对x的函数关系所制约的质的关系。因此,当增量Δx变为零,Δy也变为零,时能具有特定的值,即导函数。
在此,马克思又补充说:”要把握的真正含义,“唯一的困难是在逐渐消失的量之间确定一个比的这种辩证的见解。”
最后,马克思对传统微积分学评论到:“人们自己相信了新发现的算法的神秘性。这种算法通过肯定是不正确的数学途径得出了正确的(尤其在几何应用上是惊人的)结果。”
马克思所说的“通过肯定是不正确的数学途径得出了正确的结果”是什么意思呢?
大家知道,在传统微积分学中,其最核心的基础概念导数的定义是:“当自变量的增量Δx =x -x0,Δx→0时,函数增量Δy =f(x)-f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率)。”
但是,条件定语“Δx→0“是什么意思?在传统朴素微积分中,Δx有时是很小的不为零的量,有时又让它消失为零,这在逻辑推理上当然是不正确的。
根据历史考证,当年马克思不曾阅读过法国数学家柯西的“分析基础”,不知道基于实数上的严格极限论。我们不能苛求马克思。假若马克思得知存在非标准分析的话,他一定赞成实无穷小有时非零,其标准部分是零的数学概念。在非标准分析中,导数的定义是:
St(Δy/Δx) = dy/dx, 当Δx是无穷小时
此定义简洁明了,中学生可以接受取标准部分函数st(x)。问题在于现在缺乏足够的合格中学教员。
进入人工智能时代,让智能机器人上阵,在网上教授实无穷小微积分,广大师生一块儿学,问题不就解决了?
袁萌 6月18日