关于鲁宾逊微分与菲氏微分

519 篇文章 7 订阅
        五年前,无穷小放飞互联网行动,拉开了了鲁宾逊微分与菲氏微分定义“争斗”的序幕,刷新了人们的认识(即在数学中存在两派斗争)。

        马克思《数学手稿》预示了这场数学思想的斗争。

    袁萌  5月244日

附:

                                   关于函数增量(Δy)与微分(dy)的思考(此文发表于2013-07-28)

        7月28日,J. Keisler《基础微积分》的第2.1节导数、第2.2节微分与切线、第2.3节有理函数的导数、第2.4节反函数和第2.5节超越函数已经上传互联网完毕有感。

        在传统微积分学里面,有一个著名的公式:

            (*)   Δy =AΔx + o(Δx)

        在(*)式中,A是一个常数。“o(Δx)”这一项是什么意思呢?“十一五”国家级规划教材宣称:“o(Δx)”是所谓“高阶无穷小”(在Δx →0条件下)。也就是说,在Δx →0条件下,o(Δx)/Δx →0。此时,将表达式AΔx定义为函数y在x处的微分。

        我们问:(*)式成立与否是不是一定要以”Δx →0“为前提?当然不需要这一前提条件。但是,“十一五”国家级规划教材同济大学《高等数学》则不认为是这样的,在微分定义中,编者绑定了前提条件”Δx →0“,多年来,培育出不少小糊涂虫。
        在第2.2节微分与切线里面,J. Keisler给出函数微分定义如下:

        DEFINITION
        Suppose y dependson x, y=f(x).
            (i) Thedifferential of x is the independent variable dx =Δx.
            (ii) Thedifferential of y is the dependent variable dy given by
                dy = f′(x)dx.
            When dx≠ 0, the equation above may be rewritten as
                dy/dx = f’(x)  
 
           
        在《无穷小微积分基础》教学辅导电子书里面,J. Keisler给出了该定义与(*)式等价的证明。在超实数*R里面,函数的微分原来就是无穷小表达式f'(x)dx,两个无穷小dy与dx之比等于函数在该处的导数f'(x)。微分是什么函数增量的“线性主部”说教统统不要了。

        在超实数*R世界里面,我们的思维可以自由飞翔。在其背后有严格的数学链条牢牢地铆钉在传统微积分本体之上。反对无穷小微积分就是挑战传统微积分,只有现代唐吉歌徳先生才会干这种傻事情。我们不断地转录、上传这些无穷小微积分的文字、图片资料,就是希望它们能够长时间地释放能量,把无穷小方法渗透进学生们的脑壳中,使其终生受益。无穷小是数数学家的一项伟大智慧发明,完善了微积分学的概念体系。(全文完)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值