高等数学--微分定理及其应用(四)

本文详细介绍了微分定义,微分在工程上的近似公式,以及微分几何意义。通过实例展示了微分如何用于近似计算,如1.05^(1/2)的计算。接着探讨了中值定理,包括罗尔定理和拉格朗日中值定理,并通过实验说明了拉格朗日定理在估算中的应用。同时提到了柯西中值定理和洛必达法则,以及泰勒中值定理与麦克劳林公式,强调了泰勒公式在近似计算中的作用,如计算e^1.5的近似值。
摘要由CSDN通过智能技术生成
微分定义

设函数y=f(x)在某区间内有定义,x0及x0+Δx在这区间内,如果函数增量Δy=f(x0+Δx)-f(x0)可表示为:
Δy=AΔx+o(Δx)
其中A是不依赖于Δx的常数,那么称函数y=f(x)在点x0可微,AΔx叫做函数y=f(x)在点x0处相应于自变量增量Δx的微分,记作dy
dy=AΔx
上式可综合为:
Δy=dy+o(Δx)

当Δx→0时,limo(Δx)→0,Δy≈dy,A=f’(x0)
于是当y=f(x)在x0处可微时,Δy≈dy=f’(x0)Δx

通常把自变量的增量Δx称为自变量的微分,记作dx,那么上式又可写为:
dy=f’(x)dx

f(x0+Δx)-f(x0)≈ f’(x)dx
微分几何意义: 在局部上用切线段近似代替曲线段,也称非线性函数的局部线性化。

微分在工程上近似公式

根据微分的定义,容易推出以下近似公式:
f(x) ≈ f(0)+f’(0)x
进一步可推出:
①(1+x)^a ≈ 1+ax
② sinx ≈ x (x用弧度作单位)
③ tanx ≈ x (x用弧度作单位)
④ e^x ≈ 1+x
⑤ ln(1+x) ≈ x

在点0处增量一个Δx,如果函数f(x)可微, f(x) ≈ f(0)+f’(0)x,所以cosx ≈ 1

例9 计算1.05^(1/2)
解: 1.05^(1/2) = (1+0.05) ^(1/2) ≈ 1+1/2* 0.05 =1.025

而1.05^(1/2)直接开方=1.02470,误差不超过0.001

中值定理

罗尔定理:
①函数f(x)在闭区间[a,b]连续;
②在开区间(a,b)内可导;
③在区间端点处的函数值相等,即f(a)=f(b),那么在(a,b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值