超实数的引入

超实数的引入
当今国内大学生学习微积分课程,学到实数为止。原因是,在课堂上微积分老师不讲。
实际情况是,超实数的引入是二十世纪世界数学发展的一个里程碑。
   超实数系统是比实数系统更为精密的一种数系。学习微积分必备的数学基础知识。。
   当前,清华大学、北京大学、复旦大学和浙江大学都把超实数拒之门外。超实数在我国无法落地。,  
   请见本文附件。
袁萌  陈启清  6月23日
附件:超实数的基本概念
Hyperreal number
Jump to navigation
Jump to search
"*R" redirects here. For R*, see R* (disambiguation).
Infinitesimals (ε) and infinites (ω) on the hyperreal number line (1/ε = ω)
The system of hyperreal numbers is a way of treating infinite and infinitesimal quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form 
1 + 1 + ⋯ + 1 {\displaystyle 1+1+\cdots +1} 
 (for any finite number of terms).
Such numbers are infinite, and their reciprocals are infinitesimals. The term "hyper-real" was introduced by Edwin Hewitt in 1948.[1] 
The hyperreal numbers satisfy the transfer principle, a rigorous version of Leibniz's heuristic Law of Continuity. The transfer principle states that true first order statements about R are also valid in *R. For example, the commutative law of addition, x + y = y + x, holds for the hyperreals just as it does for the reals; since R is a real closed field, so is *R. Since 
sin ⁡ ( π n ) = 0 {\displaystyle \sin({\pi n})=0} 
 for all integers n, one also has 
sin ⁡ ( π H ) = 0 {\displaystyle \sin({\pi H})=0} 
 for all hyperintegers H. The transfer principle for ultrapowers is a consequence of Łoś' theorem of 1955. 
Concerns about the soundness of arguments involving infinitesimals date back to ancient Greek mathematics, with Archimedes replacing such proofs with ones using other techniques such as the method of exhaustion.[2] In the 1960s, Abraham Robinson proved that the hyperreals were logically consistent if and only if the reals were. This put to rest the fear that any proof involving infinitesimals might be unsound, provided that they were manipulated according to the logical rules that Robinson delineated. 
The application of hyperreal numbers and in particular the transfer principle to problems of analysis is called non-standard analysis. One immediate application is the definition of the basic concepts of analysis such as derivative and integral in a direct fashion, without passing via logical complications of multiple quantifiers. Thus, the derivative of f(x) becomes 
f ′ ( x ) = s t ( f ( x + Δ x ) − f ( x ) Δ x ) {\displaystyle f'(x)={\rm {st}}\left({\frac {f(x+\Delta x)-f(x)}{\Delta x}}\right)} 
 for an infinitesimal 
Δ x {\displaystyle \Delta x} 
, where st(•) denotes the standard part function, which "rounds off" each finite hyperreal to the nearest real. Similarly, the integral is defined as the standard part of a suitable infinite sum. 

Contents
1
The transfer principle
2
Use in analysis
2.1
Calculus with algebraic functions
2.2
Integration
3
Properties
4
Development
4.1
From Leibniz to Robinson
4.2
The ultrapower construction
4.3
An intuitive approach to the ultrapower construction
5
Properties of infinitesimal and infinite numbers
6
Hyperreal fields
7
See also
8
References
9
Further reading
10
External links
The transfer principle[edit]
Main article: Transfer principle
The idea of the hyperreal system is to extend the real numbers R to form a system *R that includes infinitesimal and infinite numbers, but without changing any of the elementary axioms of algebra. Any statement of the form "for any number x..." that is true for the reals is also true for the hyperreals. For example, the axiom that states "for any number x, x + 0 = x" still applies. The same is true for quantification over several numbers, e.g., "for any numbers x and y, xy = yx." This ability to carry over statements from the reals to the hyperreals is called the transfer principle. However, statements of the form "for any set of numbers S ..." may not carry over. The only properties that differ between the reals and the hyperreals are those that rely on quantification over sets, or other higher-level structures such as functions and relations, which are typically constructed out of sets. Each real set, function, and relation has its natural hyperreal extension, satisfying the same first-order properties. The kinds of logical sentences that obey this restriction on quantification are referred to as statements in first-order logic. 
The transfer principle, however, doesn't mean that R and *R have identical behavior. For instance, in *R there exists an element ω such that 
1 < ω , 1 + 1 < ω , 1 + 1 + 1 < ω , 1 + 1 + 1 + 1 < ω , … . {\displaystyle 1<\omega ,\quad 1+1<\omega ,\quad 1+1+1<\omega ,\quad 1+1+1+1<\omega ,\ldots .} 

but there is no such number in R. (In other words, *R is not Archimedean.) This is possible because the nonexistence of ω cannot be expressed as a first order statement. 
Use in analysis[edit]
Calculus with algebraic functions[edit]
Informal notations for non-real quantities have historically appeared in calculus in two contexts: as infinitesimals like dx and as the symbol ∞, used, for example, in limits of integration of improper integrals. 
As an example of the transfer principle, the statement that for any nonzero number x, 2x ≠ x, is true for the real numbers, and it is in the form required by the transfer principle, so it is also true for the hyperreal numbers. This shows that it is not possible to use a generic symbol such as ∞ for all the infinite quantities in the hyperreal system; infinite quantities differ in magnitude from other infinite quantities, and infinitesimals from other infinitesimals. 
Similarly, the casual use of 1/0 = ∞ is invalid,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值