关于求空间曲线的投影方程的错误思路及分析

比如要求
{ f ( x , y , z ) = 0 g ( x , y , z ) = 0 \begin{cases} f(x,y,z)=0\\ g(x,y,z)=0\\ \end{cases} {f(x,y,z)=0g(x,y,z)=0
在yoz面上的投影,我原始且错误的做法是像下面这样:
{ f ( x , y , z ) = 0 g ( x , y , z ) = 0 x = 0 \begin{cases} f(x,y,z)=0\\g(x,y,z)=0\\x=0\\ \end{cases} f(x,y,z)=0g(x,y,z)=0x=0
这样求出来的其实是一个点,其实这种做法的根源还是对求投影曲线的方法不了解,正确的做法是把f(x,y,z)=0,g(x,y,z)=0转成x=f1(y,z),x=g1(y,z),得到h(y,z)=0,最后得到的投影曲线为
{ h ( y , z ) = 0 x = 0 \begin{cases} h(y,z)=0\\x=0\end{cases} {h(y,z)=0x=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值