魔方阵(奇数)

        魔方阵,古代又称“纵横图”,是指组成元素为自然数1、2、…、n的平方的n×n的方阵,其中每个元素值都不相等,且每行、每列以及主、副对角线上各n个元素之和都相等。

        在本文中只讨论 n = 奇数

算法实现:

        1.将数字 1 放在方阵第一行中间

        2.当前数字放在前一个数字的上一行、后一列。如果已经到顶行或最后列则转到最后一行和第一列,即把线性数组看做环形数组

        3.如果当前位置已有数据,则放在前一个数字的下一行,相同列

eg:当 n = 3 时 魔方阵如下  此时 每行和 = 每列和 = 对角线和

#include<stdio.h>
#include<assert.h>

#define ROW 3     //行数
#define COL ROW   //列数 = 行数 

void MagicMatrix()
{
	int arr[ROW][COL] = { 0 };
	assert(ROW % 2 != 0);//判断ROW为奇数

    //放置数字 1 
	int currow = 0;
	int curcol = COL / 2;
	arr[currow][curcol] = 1;

	for (int i = 2; i <= ROW * COL; i++)
	{
        //对行数进行计算
		currow = (currow - 1 + ROW) % ROW;
        //对列数进行计算
		curcol = (curcol + 1) % COL;
        //如果当前位值有数据时的处理
		if (arr[currow][curcol] != 0)
		{
			currow = (currow + 2) % ROW;
			curcol = (curcol - 1 + COL) % COL;
		}
		arr[currow][curcol] = i;
	}

	//输出方阵内容
	for (int i = 0; i < ROW; i++)
	{
		for (int j = 0; j < COL; j++)
		{
			printf("%3d", arr[i][j]);
		}
		printf("\n");
	}
}

int main()
{
	MagicMatrix();
}

运行结果: 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值