1 题目描述
平面上有 n 个点,点的位置用整数坐标表示 points[i] = [xi, yi]。请你计算访问所有这些点需要的最小时间(以秒为单位)。
你可以按照下面的规则在平面上移动:
每一秒沿水平或者竖直方向移动一个单位长度,或者跨过对角线(可以看作在一秒内向水平和竖直方向各移动一个单位长度)。
必须按照数组中出现的顺序来访问这些点。
示例 1:
输入:points = [[1,1],[3,4],[-1,0]]
输出:7
解释:一条最佳的访问路径是: [1,1] -> [2,2] -> [3,3] -> [3,4] -> [2,3] -> [1,2] -> [0,1] -> [-1,0]
从 [1,1] 到 [3,4] 需要 3 秒
从 [3,4] 到 [-1,0] 需要 4 秒
一共需要 7 秒
示例 2:
输入:points = [[3,2],[-2,2]]
输出:5
提示:
points.length == n
1 <= n <= 100
points[i].length == 2
-1000 <= points[i][0], points[i][1] <= 1000
2 解题思路
找规律发现最短时间就是两个横纵坐标之间的距离中较小的距离再加上两个距离之差。
3 代码
class Solution(object):
def minTimeToVisitAllPoints(self, points):
sum = 0
for i in range(len(points)-1):
R1=points[i]
x1 = R1[0]
y1 = R1[1]
R2 = points[i+1]
x2 = R2[0]
y2 = R2[1]
Xs=abs(x1-x2)
Ys=abs(y1-y2)
if Xs==Ys:
sum+=Xs
elif Xs<Ys:
c=Ys-Xs
sum +=Xs+c
elif Xs>Ys:
c=Xs-Ys
sum+=Ys+c
return sum
t=Solution()
t.minTimeToVisitAllPoints([[1,1],[3,4],[-1,0]])