看见一个问题:
我刷知乎不多,但是也有这个感觉:211凑合,985一般,清北还行。常青藤,勉强入眼,年薪百万算个屁,月入千万有点低。
好吧,我不知道是谁飘了,我只知道随便敲敲键盘确实很简单。
其实也不单单是知乎,现在的很多平台如头条、抖音,都有一种夸大和焦虑的氛围,这让很多人就产生一种错觉:我是不是很失败?
我通过python获取了一些数据,然后以可视化的形式对头条用户进行展开分析,来看看真实情况是不是和你想的一样?
一、获取数据
因为不是所有的数据都能爬的,所以我只能基于现有的一些分析数据,如咨询公司、分析报告的数据进行整合处理。
我们需要知道哪些数据?头条用户的学历、城市、职业、偏好、活跃时间。
二、选择分析工具
本来我是想用python的,但是为了能让你们看懂且能自己照着分析一遍,我选择了BI工具。
python的分析过程还是比较繁琐的,sql,pandas这些不简单,我之前分析的时候就用过python+BI:
BI工具方面,我用的是FineBI,比Excel简单方便,拖拽就可以分析出结果了,配上多种类型的柱状图、饼图、雷达图,真挺简单。
python强大的数据获取能力,配合敏捷FineBI简单快捷的数据可视化操作,分析效果不用多说。
三、可视化分析
1、头条用户都是哪里毕业的?
看看这学历,啧啧啧,果真985遍地走。
但是我这说一下实际情况,不是所有人都会填学校,也不是所有人都会正确地填自己的学校,反正在网上,大家谁也不认识谁。
从我的感知来看,这数据不准,学校是次要的,不影响FineBI的这个词云图。
2、头条用户都分布在哪些城市
这个问题应该不用看就知道,人口基数越大,用户的数量就越多,江浙沪、长三角、珠三角首当其冲。
北上广深杭,应该处于中心,那这数据就是准的。
3、不同年龄段的人有多少?
从柱状图来看,整体男性用户的比例是高于女性的,25-30岁的男性为什么会用的多?这点我不能理解
顺便说个数字,40岁以上的用户都集中在三线及以后城市,可能是因为年纪大了比较清闲吧。
4、活跃度分析
因为数据太多,需要年龄、时间段、活跃度,这些数据我这里没有找到,但是FineBI完全可以分析多维度数据。
我找到了某咨询的报告,较为准确:
- 90后更喜欢夜间看头条,可能是因为加班回家只有晚上才有空。
- 80后们,起的比较早,通常是早上活跃。
以上分析就差不多了,结论是什么,其实并不重要。
学会FineBI这个工具,不敢说比Excel强多了,但起码是简单的,而且年底的数据分析报告,也可以用FineBI工具做出来。
FineBI工具的获取,转发该文章,私信回复“BI”就可以获得了。