示例中提到的数据分析工具分享给大家—— https://s.fanruan.com/7lh3w 零基础快速上手,还能根据需求进行个性化修改哦
rfm模型是什么?
营销人员经常会面临平衡公司预算与客户营销覆盖率的挑战,所以,在面向客户制定运营策略、营销策略时,我们应当针对不同的客户推行不同的策略,实现精准化运营,以期获取最大的转化率。
精准化运营的前提是客户关系管理,而客户关系管理的核心是客户分类。
在客户价值管理的分析模型中,RFM模型是应用最普遍的模型。
RFM模型通过客户分类,对客户群体进行细分,区别出低价值客户、高价值客户,对不同的客户群体开展不同的个性化服务,将有限的资源合理地分配给不同价值的客户,实现效益最大化。
但是如何判别优质客户呢,评价的数据指标是什么,各自权重如何把握,大小又如何衡量?
本文,老李将给大家分享RFM模型的基础知识,并且手把手教你用BI工具搭建RFM分析模型。
内容大纲
1、RFM客户价值模型简介
- RFM模型为什么能成为客户价值管理“明星模型”?
- RFM模型能够解决哪些业务问题?
- RFM模型应用的典型案例
- RFM模型能够应用在哪些行业领和业务场景
- 搭建RFM需要哪些基础数据?
2、利用FineBI搭建RFM模型
- 原始数据
- RFM分箱
- 用户分类
3、RFM模型可视化DashBoard及应用
4、RFM模型的扩展
一、RFM客户价值模型简介
RFM模型为什么能成为客户价值管理里的“明星模型”?
- 客观: 利用客观的数字尺度,对客户进行简明而翔实的高水平描述。
- 简单:只需要客户的消费时间和消费金额两个字段,业务人员就可以在不需要信息部门或复杂软件的情况下就能有效使用它。
- 直观:这种分割方法的输出很容易理解和解释。
RFM模型能够轻松地解答你业务上的这些问题
- 谁是我最好的客户?
- 哪些客户正处于流失的边缘?
- 谁有可能转化为更有利可图的客户?
- 谁是你不需要关注的无价值客户?
- 你必须保留哪些客户?
- 谁是你的忠实客户?
- 哪些客户最有可能对当前的营销动作做出回应?
RFM模型教给你的那些典型业务决策
客户价值常氛围以下8类,也有一些业务数据分析师会将其氛围4类11类等等。
在实际操作中,可以定义:
- R:一段时间内,客户最近一次交易日期,与时间段终点越近越好
- F:一段时间内,客户交易的次数,次数越多越好
- M:一段时间内,客户的交易度量(如:金额,利润,利润率),越大越好
首先,选定客户群体的每个客户,计算上述三个指标的值。其次,从上述结果可以计算选定客户群体的三个指标的(算术)平均值。
以下,加粗的是更值得我们关注的客户群体。
RFM模型能够应用在以下行业领域和细分场景
互联网、零售、电商、银行、通信、餐饮、 交通运输、保险、证券、采购/供应商评估…
搭建RFM分析模型需要哪些数据?
3个数据库的原始字段记录:客户名称/客户ID、消费时间、消费金额。
进而整理出4个字段:
- 客户名称
- 近度(Recency,最近一次消费到当前的时间间隔)
- 频度(Frequency,最近一段时间内的消费次数)
- 额度(Monetory,最近一段时间内的消费金额总额/均额)。
二、利用FineBI搭建RFM模型
RFM搭建的原理很简单,用Excel就能搭建。但是用Excel需要写很多函数和代码,过程相对复杂。近几年,不少数据分析师已经开始用BI可视化工具来搭建这样的分析模型。
在这里推荐一个BI工具——FineBI。
FineBI是一个能快速搭建各种业务模型的自助式分析平台,常用于各种业务的数据分析。图表美观、上手简单,搭建模型也不需要很专业的数据挖掘技能。
下面用FineBI为工具,手把手教给大家搭建RFM模型的过程。
1)在「我的分析」下创建「RFM模型分析」主题,上传示例数据「RFM明细数据」,如下图所示:
2)计算每个客户的平均单次消费金额、消费次数、最后一次消费距今天数。
- 最近一次消费时间(R):「DATE」的汇总方式选择「最晚时间」,可得到每个用户最近一次购买的时间;
- 消费次数(F):由于有一条记录代表该用户购买了一次,所以随意拖入一个「CUSTOMERNAME」求「记录个数」即可;
- 平均单次消费金额(M):「MONEY1」的汇总方式选择「平均」,可求到每个用户平均单次消费金额;
- 「MONEY」的汇总方式选择「求和」,可求到每个用户消费金额。
3)根据rfm对于客户的标准进行客户分类。
4)效果查看
5)可视化优化
示例中提到的数据分析工具分享给大家—— https://s.fanruan.com/7lh3w 零基础快速上手,还能根据需求进行个性化修改哦