📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
1. 融入金融文本特征的LSTM预测模型
随着我国经济社会的发展,人们生活水平逐渐提高,拥有更多的闲置资金,因此越来越多的人将目光转向股票等理财产品。股票因其高收益的特性,成为多数人的选择。然而,股票市场具有较高的风险性,股市纷繁复杂、变化莫测,诸多因素都对股价有着重要的影响。得益于行为金融学理论的支持,人们逐渐关注投资者的心理状况和情绪对股市的影响。近年来,机器学习和自然语言处理技术飞速发展,使得通过网络媒体的文本信息来度量投资者情绪成为可能,进而能够挖掘金融文本所反映的投资者情绪与股价变动之间的关系。大量研究文献表明,金融文本背后的投资者情绪与股价变动确有密切关系。
-
数据收集与处理:
- 金融文本数据:本文收集了大量的金融新闻、社交媒体帖子、论坛讨论等文本数据,涵盖多个股票市场和时间周期。通过情感词典和机器学习的方法,提取文本中的情感特征,如正面情绪、负面情绪、中性情绪等。
- 历史交易数据:同时,本文还收集了股票市场公开的历史交易数据,包括每日的开盘价、收盘价、最高价、最低价、成交量等指标。
- 数据预处理:对收集的数据进行清洗和预处理,去除无效和重复的数据,确保数据的质量。通过计算每日收益率、波动率等指标,为后续分析提供基础数据。
-
特征提取:
- 金融文本特征:使用情感词典和机器学习方法,提取金融文本中的情感特征。情感词典包含大量正面和负面词汇,通过匹配文本中的词汇,计算文本的情感得分。机器学习方法则通过训练分类模型,识别文本中的情感倾向。
- 技术指标:从历史交易数据中提取多种技术指标,如移动平均线(MA)、相对强弱指数(RSI)、布林带(Bollinger Bands)等,这些指标能够反映股票市场的技术面信息。
- 宏观经济指标:收集宏观经济数据,如GDP增长率、通货膨胀率、利率等,这些指标能够反映宏观经济环境对股市的影响。
-
模型构建:
- LSTM模型:本文利用LSTM(长短期记忆网络)构建股价预测模型