📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1) 股票预测中的机器学习与深度学习方法综述
金融股票预测是利用科学方法对股票历史数据进行分析,以预测市场的未来走向。该过程基于对历史数据中潜在规律的分析,旨在为企业和个人投资提供决策支持,以便最大限度地获得收益并将风险降至最低。近年来,机器学习作为一种数据驱动的方法,已在文本处理、图像分析等领域取得了显著成果,这种优势同样也在金融股票预测中得到了验证。
本文首先对相关文献进行了详细的综述,并从多个角度对股票预测的研究进行了分类和总结。通过分析国内外的研究现状,提炼出股票预测中较为创新的研究方向,即分类预测与集成学习。本文介绍了6个在股票研究中广泛应用的机器学习和深度学习算法,包括支持向量回归(SVR)、随机森林