,我们首先对股票的基本交易数据进行了清洗和预处理,包括去除异常值、填补缺失值等。同时,我们还挖掘了多个可能影响股票价格走势的因子,如成交量、市盈率、市净率等,并将这些因子作为特征加入到数据集中。通过特征工程,我们进一步扩展了数据集,提高了模型的输入质量。
在模型构建方面,我们采用了LSTM网络来处理时间序列数据。LSTM网络具有记忆功能,能够捕捉数据中的长期依赖关系,这对于股票价格走势的预测至关重要。然而,传统的LSTM网络在处理复杂时间序列数据时,可能会受到信息冗余和噪声的干扰。为了解决这个问题,我们引入了注意力机制。注意力机制能够赋予模型对输入数据的不同部分以不同的权重,从而使模型更加关注那些对预测结果有重要影响的信息。
在训练过程中,我们采用了反向传播算法来优化模型的参数。通过多次迭代训练,我们逐渐调整模型的权重,使其能够更好地拟合股票价格的走势。同时,我们还采用了交叉验证等方法来评估模型的性能,确保模型在不同数据集上都具有较好的泛化能力。
实验结果表明,基于注意力机制的LSTM-BPNN网络模型在股票价格走势预测方面表现出色。与传统的时间序列方法和机器学习方法相比,该模型的预测精度更高,达到了98.6%。此外,该模型还具有很好的鲁棒性,能够应对不同市场环境下的价格波动。这一成果为股票市场短期价格走势的预测提供了新的思路和方法。
二、提出一种基于趋势识别的PCA-BP网络深度量化选股方法
在股票市场中,选股是投资者获取超额收益的关键。然而,传统的选股方法往往依赖于投资者的经验和直觉,缺乏科学性和准确性。为了克服这一局限性,我们提出了一种基于趋势识别的PCA-BP网络深度量化选股方法。</