dropna参见https://blog.csdn.net/roamer314/article/details/84816171
df[~(df['col'].isnull())] #删掉空行
df.dropna(axis=0) #删除有空值的行,使用参数axis=0
df.dropna(axis=1) #删除有空值的列,使用参数axis=1
drop解释
Ipython:dataframe.drop?
Signature:
dataframe.drop(
labels=None,
axis=0,
index=None,
columns=None,
level=None,
inplace=False,
errors='raise',
)
Docstring:
Drop specified labels from rows or columns.
Remove rows or columns by specifying label names and corresponding
axis, or by specifying directly index or column names. When using a
multi-index, labels on different levels can be removed by specifying
the level.
Parameters
----------
labels : single label or list-like
Index or column labels to drop.
axis : {0 or 'index', 1 or 'columns'}, default 0
Whether to drop labels from the index (0 or 'index') or
columns (1 or 'columns').
index, columns : single label or list-like
Alternative to specifying axis (``labels, axis=1``
is equivalent to ``columns=labels``).
.. versionadded:: 0.21.0
level : int or level name, optional
For MultiIndex, level from which the labels will be removed.
inplace : bool, default False
If True, do operation inplace and return None.
errors : {'ignore', 'raise'}, default 'raise'
If 'ignore', suppress error and only existing labels are
dropped.
Returns
-------
dropped : pandas.DataFrame
Raises
------
KeyError
If none of the labels are found in the selected axis
See Also
--------
DataFrame.loc : Label-location based indexer for selection by label.
DataFrame.dropna : Return DataFrame with labels on given axis omitted
where (all or any) data are missing.
DataFrame.drop_duplicates : Return DataFrame with duplicate rows
removed, optionally only considering certain columns.
Series.drop : Return Series with specified index labels removed.
Examples
--------
df = pd.DataFrame(np.arange(12).reshape(3,4),
columns=['A', 'B', 'C', 'D'])
df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Drop columns
df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
Drop a row by index
df.drop([0, 1])
A B C D
2 8 9 10 11
Drop columns and/or rows of MultiIndex DataFrame
midx = pd.MultiIndex(levels=[['lama', 'cow', 'falcon'],
['speed', 'weight', 'length']],
codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
[0, 1, 2, 0, 1, 2, 0, 1, 2]])
df = pd.DataFrame(index=midx, columns=['big', 'small'],
data=[[45, 30], [200, 100], [1.5, 1], [30, 20],
[250, 150], [1.5, 0.8], [320, 250],
[1, 0.8], [0.3,0.2]])
df
big small
lama speed 45.0 30.0
weight 200.0 100.0
length 1.5 1.0
cow speed 30.0 20.0
weight 250.0 150.0
length 1.5 0.8
falcon speed 320.0 250.0
weight 1.0 0.8
length 0.3 0.2
df.drop(index='cow', columns='small')
big
lama speed 45.0
weight 200.0
length 1.5
falcon speed 320.0
weight 1.0
length 0.3
df.drop(index='length', level=1)
big small
lama speed 45.0 30.0
weight 200.0 100.0
cow speed 30.0 20.0
weight 250.0 150.0
falcon speed 320.0 250.0
weight 1.0 0.8
使用df.drop删除df第一行,先取得第一行的index值:
CU2104.index.values[0]
然后传入到drop函数中,如下图所示